A1d Vectors and Matrices: Example Sheet 4 Michaelmas 2017

A * denotes a question, or part of a question, that should not be done at the expense of questions later on the sheet. Starred questions are not necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk.

1. A matrix A is said to be upper triangular if $A_{ij} = 0$ if $i > j$, i.e. if

\[
A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
0 & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{nn}
\end{pmatrix}.
\]

Show that the eigenvalues are $\lambda_i = A_{ii}$ ($i = 1, \ldots, n$, and obviously no sum).

2. Let $\{e_1, \ldots, e_m\}$ and $\{f_1, \ldots, f_n\}$ be bases for \mathbb{R}^m and \mathbb{R}^n respectively, and let A be a linear mapping from \mathbb{R}^m to \mathbb{R}^n. Explain how to represent A by a matrix relative to the given bases.

(a) Taking $m = 2$, $n = 3$ and A as the linear mapping for which

\[
A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 3 \end{pmatrix},
\]

where components are with respect to the standard bases for \mathbb{R}^2 and \mathbb{R}^3, find the matrix of A with respect to the bases

\[
e_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad e_2 = \begin{pmatrix} -3 \\ 2 \end{pmatrix}; \quad f_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad f_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]

(b) The mapping A of \mathbb{R}^3 to itself is a reflection in the plane $x_1 \sin \theta = x_2 \cos \theta$. Find the matrix A of A with respect to any basis of your choice, which should be specified.

3. The linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

\[
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5x + 9y \\ -4x + 7y \end{pmatrix}.
\]

Find the matrix B of the map A relative to the basis

\[
\left\{ \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\},
\]

and interpret the map geometrically. Hence show that, for each positive integer n,

\[
B^n - I = n(B - I),
\]

where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Hence evaluate A^n. Verify that $\det(A^n) = (\det A)^n$.

*4. Show that similar matrices have the same rank.

5. Show that the matrix

\[
A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}
\]

has characteristic equation $(t - 2)^3 = 0$. Explain (without doing any further calculations) why A is not diagonalisable.
6. (a) Find \(a, b \) and \(c \) such that the matrix
\[
\begin{pmatrix}
\frac{1}{3} & 0 & a \\
\frac{2}{3} & \frac{1}{\sqrt{2}} & b \\
\frac{2}{3} & -\frac{1}{\sqrt{2}} & c
\end{pmatrix}
\]
is orthogonal. Does this condition determine \(a, b \) and \(c \) uniquely?

(b) Let
\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad P = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
\]
Do you expect \(PAP^{-1} \) to be symmetric? Compute \(PAP^{-1} \). Were you right?

7. (a) Show that the Cayley-Hamilton theorem is true for all \(2 \times 2 \) matrices.

(b) Let
\[
A = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}.
\]
Find the characteristic equation for \(A \). Verify that \(A^2 = 2A - I \). Is \(A \) diagonalisable?

Show by induction that \(A^n \) lies in the two-dimensional subspace (of the space of \(2 \times 2 \) real matrices) spanned by \(A \) and \(I \), i.e. show that there exists real numbers \(\alpha_n \) and \(\beta_n \) such that
\[
A^n = \alpha_n A + \beta_n I.
\]
Find a recurrence relation (i.e. a difference equation) for \(\alpha_n \) and \(\beta_n \), and hence find an explicit formula for \(A^n \).

8. Determine the eigenvalues and eigenvectors of the symmetric matrix
\[
A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}.
\]
Use an identity of the form \(P^TAP = D \), where \(D \) is a diagonal matrix, to find \(A^{-1} \).

9. Show that the eigenvalues of a unitary matrix have unit modulus. Show that if a unitary matrix has distinct eigenvalues then the eigenvectors are orthogonal.

10. A skew-Hermitian matrix, \(W \), is one such that \(W^\dagger = -W \). What can be said about the eigenvalues of a skew-Hermitian matrix? (Hint: consider \(H = iW \))?

If \(S \) is real symmetric and \(T \) is real skew-symmetric, show that \(T \pm iS \) is skew-Hermitian. State a property of the eigenvalues of \(T + iS \) and hence, or otherwise, show that
\[
det(T + iS - I) \neq 0.
\]
Show that the matrix
\[
U = (1 + T + iS)(1 - T - iS)^{-1}
\]
is unitary. For
\[
S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},
\]
show that the eigenvalues of \(U \) are \(\pm(1 - i)/\sqrt{2} \).

11. This is a continuation of question 8 on Example Sheet 2.

As in question 8 on Example Sheet 2 consider the linear map \(S : \mathbb{R}^2 \to \mathbb{R}^2 \)
\[
x \mapsto x' = x + \lambda(b \cdot x) a
\]
where \(\lambda \) is a real scalar, \(a \) and \(b \) are fixed orthogonal unit vectors. Let \(S(\lambda, a, b) \) be the matrix with elements \(S_{ij} \) such that \(x'_i = S_{ij}x_j \). Give diagrams illustrating the shears
\[
S_1 = S(\lambda, 1, 1), \quad S_2 = S(\lambda, 1, -1).
\]
Show that S_1 and S_2 are related by a similarity transformation

\[S_2 = R^{-1} S_1 R, \quad R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \]

Now let S be the map defined by $(*)$ but from \mathbb{R}^3 to \mathbb{R}^3, and let $\mathbf{i}, \mathbf{j}, \mathbf{k}$ be unit vectors along the three perpendicular axes. Find the matrix S in each of the cases

(i) $\mathbf{a} = \mathbf{i}, \mathbf{b} = \mathbf{j}$,
(ii) $\mathbf{a} = \mathbf{j}, \mathbf{b} = \mathbf{k}$,
(iii) $\mathbf{a} = \mathbf{k}, \mathbf{b} = \mathbf{i}$,

and interpret the corresponding simple shears. Show that any matrix of the form

\[
\begin{pmatrix}
1 & \lambda & \mu \\
0 & 1 & \nu \\
0 & 0 & 1
\end{pmatrix}
\]

can be displayed (not necessarily uniquely) as the product of matrices of simple shears.

*12. Diagonalize the quadratic form

\[F = (a \cos^2 \theta + b \sin^2 \theta)x^2 + 2(a - b)(\sin \theta \cos \theta)xy + (a \sin^2 \theta + b \cos^2 \theta)y^2, \]

and identify the principal axes.

13. Find all eigenvalues, and an orthonormal set of eigenvectors, of the matrices

\[
A = \begin{pmatrix}
5 & 0 & \sqrt{3} \\
0 & 3 & 0 \\
\sqrt{3} & 0 & 3
\end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{pmatrix}.
\]

Hence sketch the surfaces

\[5x^2 + 3y^2 + 3z^2 + 2\sqrt{3}xz = 1 \quad \text{and} \quad x^2 + y^2 + z^2 - xy - yz - zx = 1. \]

14. Let Σ be the surface in \mathbb{R}^3 given by

\[2x^2 + 2xy + 4yz + z^2 = 1. \]

By writing this equation as

\[x^T A x = 1, \]

with A a real symmetric matrix, show that there is an orthonormal basis such that, if we use coordinates (u, v, w) with respect to this new basis, Σ takes the form

\[\lambda u^2 + \mu v^2 + \nu w^2 = 1. \]

Find λ, μ and ν and hence find the minimum distance between the origin and Σ. \textbf{Hint: it is not necessary to find the basis explicitly.}

15. (i) Explain what is meant by saying that a 2×2 real matrix,

\[
A = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix},
\]

preserves the scalar product on \mathbb{R}^2 with respect to

(a) the Euclidean metric, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, or (b) the Minkowski metric, $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

(ii) Using a single real parameter together with a choice of sign (± 1), give and justify a description of all matrices, A, that preserve the scalar product with respect to the Euclidean metric. Show that these matrices form a group.

(iii) Using a single real parameter together with a choice of sign (± 1), give and justify a description of all matrices, A with $a > 0$, that preserve the scalar product with respect to the Minkowski metric. Show that these matrices form a group.

(iv) What is the intersection of the above two groups?
Revision Questions

16. Show that a rotation about the z-axis through an angle θ corresponds to the matrix

\[
R = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Write down a real eigenvector of R and give the corresponding eigenvalue. In the case of a matrix corresponding to a general rotation, how can one find the axis of rotation?

A rotation through 45° about the x-axis is followed by a similar one about the z-axis. Show that the rotation corresponding to their combined effect has its axis inclined at equal angles to the x and z axes.

17. Show that the eigenvalues of a real orthogonal matrix have unit modulus and that if λ is an eigenvalue so is λ^*. Hence argue that the eigenvalues of a 3×3 real orthogonal matrix Q must be a selection from ± 1, -1 and $e^{i\alpha}$ & $e^{-i\alpha}$.

Verify that $\det Q = \pm 1$. What is the effect of Q on vectors orthogonal to an eigenvector with eigenvalue ± 1?

*18. This is another way of proving $\det AB = \det A \det B$. You may wish to stick to the case $n = 3$.

If $1 \leq r, s \leq n$, $r \neq s$ and λ is real, let $E(\lambda, r, s)$ be an $n \times n$ matrix with (i, j) entry $\delta_{ij} + \lambda \delta_{ir} \delta_{js}$. If $1 \leq r \leq n$ and μ is real, let $F(\mu, r)$ be an $n \times n$ matrix with (i, j) entry $\delta_{ij} + (\mu - 1) \delta_{ir} \delta_{jr}$.

(i) Give a simple geometric interpretation of the linear maps from \mathbb{R}^n to \mathbb{R}^n associated with $E(\lambda, r, s)$ and $F(\mu, r)$.

(ii) Give a simple account of the effect of pre-multiplying an $n \times m$ matrix by $E(\lambda, r, s)$ and by $F(\mu, r)$. What is the effect of post-multiplying an $m \times n$ matrix?

(iii) If A is an $n \times n$ matrix, find $\det(E(\lambda, r, s)A)$ and $\det(F(\mu, r)A)$ in terms of $\det A$.

(iv) Show that every $n \times n$ matrix is the product of matrices of the form $E(\lambda, r, s)$ and $F(\mu, r)$ and a diagonal matrix with entries 0 or 1.

(v) Use (iii) and (iv) to show that, if A and B are $n \times n$ matrices, then $\det A \det B = \det AB$.

*19. The object of this exercise is to show why finding eigenvalues of a large matrix is not just a matter of finding a large fast computer.

Consider the $n \times n$ complex matrix $A = \{A_{ij}\}$ given by

\[
A_{ij} = 1 \quad \text{for } 1 \leq j \leq n - 1, \\
A_{n1} = \kappa^n, \\
A_{ij} = 0 \quad \text{otherwise},
\]

where $\kappa \in \mathbb{C}$ is non-zero. Thus, when $n = 2$ and $n = 3$, we get the matrices

\[
\begin{pmatrix}
0 & 1 \\
\kappa^2 & 0
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
\kappa^2 & 0 & 0
\end{pmatrix}.
\]

(i) Find the eigenvalues and associated eigenvectors of A for $n = 2$ and $n = 3$.

(ii) By guessing and then verifying your answers, or otherwise, find the eigenvalues and associated eigenvectors of A for for all $n \geq 2$.

(iii) Suppose that your computer works to 15 decimal places and that $n = 100$. You decide to find the eigenvalues of A in the cases $\kappa = 2^{-1}$ and $\kappa = 3^{-1}$. Explain why at least one (and more probably) both attempts will deliver answers which bear no relation to the true answers.