Exercises on Complex Numbers and an Exercise on Summation

These examples are designed to dust off a few cobwebs and check familiarity with material that the lecturer will assume. The examples are not intended as part of the Examples Sheets for supervision.

1. For \(z = a + ib \) and \(z^{-1} = \frac{a - ib}{a^2 + b^2} \) confirm that
 \[zz^{-1} = 1 + i.0. \]

2. Confirm that
 (a) \(\bar{z} = z \);
 (b) \(z_1 \pm z_2 = \bar{z}_1 \pm \bar{z}_2 \);
 (c) \(\bar{z}_1 \bar{z}_2 = \bar{z}_1 \bar{z}_2 \);
 (d) \((z^{-1}) = (z)^{-1} \).

3. Confirm that
 (a) \(|z|^2 = z \bar{z} \);
 (b) \(z^{-1} = \frac{\bar{z}}{|z|^2} \).

4. For \(x, y \in \mathbb{C} \) give a geometric interpretation of \(x/y \).

5. For \(x, y \in \mathbb{C} \) and \(n \) a positive integer, show that
 \[\log(xy) = \log(x) + \log(y), \]
 and
 \[\log(x^n) = n \log(x). \]
 You may assume any property of the complex exponential function required, and that \(\exp(\log(x)) = x \).

6. For non-zero \(w, z \in \mathbb{C} \) show that if \(z \bar{w} - \bar{z}w = 0 \), then \(z = \gamma w \) for some \(\gamma \in \mathbb{R} \).

7. For positive integers \(m \) and \(n \) and coefficients \(a_{ij} \in \mathbb{C} \), with \(0 \leq i \leq m \) and \(0 \leq j \leq n \), show that
 \[\sum_{p=0}^{m} \sum_{q=0}^{n} a_{pq} = \sum_{q=0}^{n} \sum_{p=0}^{m} a_{pq} = \sum_{p=0}^{m} \sum_{r=0}^{\min(r,m)} a_{p-rp} = \sum_{r=0}^{m} \sum_{q=0}^{\min(r,n)} a_{r-q-q}. \quad (1) \]

By taking
 \[a_{pq} = \frac{x^p y^q}{p!q!}, \quad \text{for} \ x, y \in \mathbb{C}, \]
show that \(\exp(x) \exp(y) = \exp(x + y) \) on the assumption that, for this choice of \(a_{pq} \), (1) remains valid as \(m \to \infty \) and \(n \to \infty \).