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Mathematical Tripos Part IA Michaelmas Term 2024

Differential Equations Prof. Anthony Challinor

Examples Sheet 3

The starred questions are intended as extras: do them if you have time, but not at the

expense of unstarred questions on later sheets.

1. Find the general solutions of:

(i) y′′ + 5y′ + 6y = e3x ;

(ii) y′′ + 9y = cos 3x ;

(iii) y′′ − 2y′ + y = (x− 1)ex .

2. The function y(x) satisfies the linear equation

y′′ + p(x)y′ + q(x)y = 0 .

The Wronskian W (x) of two independent solutions, denoted y1(x) and y2(x), is defined to
be

W (x) =

∣

∣

∣

∣

y1 y2
y′1 y′2

∣

∣

∣

∣

.

Let y1(x) be given. Use the Wronskian to determine a first-order inhomogeneous
differential equation for y2(x). Hence, show that

y2(x) = y1(x)

∫ x

x0

W (t)

[y1(t)]2
dt . (∗)

Show that W (x) satisfies
dW

dx
+ p(x)W = 0 .

Verify that y1(x) = 1− x is a solution of

xy′′ − (1− x2)y′ − (1 + x)y = 0 . (†)

Hence, using (∗) with x0 = 0 and expanding the integrand in powers of t to order t3, find
the first three non-zero terms in the power-series expansion for a solution, y2, of (†) that
is independent of y1 and satisfies y2(0) = 0, y′′2(0) = 1.
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3. Find the general solutions of the following discrete equations:

(i) yn+2 + yn+1 − 6yn = n2 ;

(ii) yn+2 − 3yn+1 + 2yn = n ;

(iii) yn+2 − 4yn+1 + 4yn = an , where a 6= 2.

For (iii), by expressing an as a Taylor series about a = 2, find the general solution in the
case a = 2.

4.(i) Find the solution of y′′ − y′ − 2y = 0 that satisfies y(0) = 1 and is bounded as
x → ∞.

(ii) Solve the related difference equation

(yn+1 − 2yn + yn−1)−
1

2
h (yn+1 − yn−1)− 2h2yn = 0 ,

and show that if 0 < h ≪ 1 the solution that satisfies y0 = 1 and for which yn is
bounded as n → ∞ is approximately yn = (1− h+ h2/2)

n
. Explain the relation

with the solution of Part (i).

5. Show that
1

r2
d

dr

(

r2
dT

dr

)

≡
1

r

d2

dr2
(rT )

and hence solve the equation

1

r2
d

dr

(

r2
dT

dr

)

= k2T , for r 6= 0

subject to the conditions that limr→0 T (r) is finite and T (1) = 1.

6. Given the solution y1(x), find a second solution of the following equations:

(i) x(x+ 1)y′′ + (x− 1)y′ − y = 0 , with y1(x) = (x+ 1)−1 ;

(ii) xy′′ − y′ − 4x3y = 0 , with y1(x) = ex
2

.

∗7. The n functions yj(x) (1 ≤ j ≤ n) are independent solutions of the equation

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn−1(x)y

′(x) + pn(x)y(x) = 0 .

Let W be the n× n matrix whose i, j element Wij is y
(i−1)
j (x) (so that the determinant

|W| = W , the Wronskian). Find a matrix A, which does not explicitly involve the yj,
such that

W
′ = AW ,
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where W
′ is the matrix whose elements are given by (W′)ij = W ′

ij. Using the identity

(ln |W|)′ = Tr
(

W
′
W

−1
)

,

express W in terms of p1(x).

8. Let y(x) satisfy the inhomogeneous equation

y′′ − 2x−1y′ + 2x−2y = f(x) . (∗)

Set
(

y

y′

)

= u(x)

(

y1
y′1

)

+ v(x)

(

y2
y′2

)

,

where y1(x) and y2(x) are two independent solutions of (∗) when f(x) = 0, and u(x) and
v(x) are unknown functions. Obtain first-order differential equations for u(x) and v(x),
and hence find the most general solution of (∗) in the case f(x) = x sin x. Are the
functions u(x) and v(x) completely determined by this procedure?

9. A large oil tanker of mass M floats on the sea of density ρ. Suppose the tanker is
given a small downward displacement z. The upward force is equal to the weight of water
displaced (Archimedes’ Principle). If the cross-sectional area A of the tanker at the water
surface is constant, show that this upward force is gρAz, and hence that

z̈ +
gρA

M
z = 0 .

Suppose now that a mouse exercises on the deck of the tanker producing a vertical force
f0 sinωt, where ω = (gρA/M)1/2. Show that the tanker will eventually sink. In practice,
as the vertical motion of the tanker increases, waves will be generated. Suppose they
produce an additional damping force 2kż. Discuss the motion for a range of values of k.

10. Find and sketch the solution of

ÿ + y = H(t− π)−H(t− 2π) ,

where H is the Heaviside step function, subject to the initial conditions

y(0) = ẏ(0) = 0

and with y(t) and ẏ(t) continuous at t = π and t = 2π.

11. Solve
y′′ − 4y = δ(x− a) ,

where δ is the Dirac delta function, subject to the condition that y(x) is continuous at
x = a and boundary conditions that y is bounded as |x| → ∞. Sketch the solution.
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12. Solve
ÿ + 2ẏ + 5y = 2δ(t) ,

where δ is the Dirac delta function, given that y = 0 for t < 0. Give an example of a
physical system that this equation and boundary condition describes.

∗13. Show that, for suitably chosen P (x), the transformation y(x) = P (x)v(x) reduces
the equation

y′′ + p(x)y′ + q(x)y = 0

to the form
v′′ + J(x)v = 0 . (∗)

The sequence of functions vn(x) is defined, for a given function J(t) and in a given range
0 ≤ x ≤ R, by v0(x) = a+ bx and

vn(x) =

∫ x

0

(t− x)J(t)vn−1(t) dt (n ≥ 1) .

Show that v′′n(x) + J(x)vn−1 = 0 (n ≥ 1) and deduce that v(x) =
∑

∞

n=0 vn(x) satisfies (∗)
with the initial conditions v(0) = a, v′(0) = b. [You may assume that the sum that
defines v(x) converges sufficiently nicely to allow term-by-term differentiation. In fact,
you can show by induction that if |J(x)| < m and |v0(x)| < A for the range of x under
consideration, then |vn(x)| ≤ Amnx2n/(2n)! – try it! Convergence is therefore
exponentially fast.]

What do these results tell us about the existence problem for general second-order linear
equations with given initial conditions?

∗14. This question concerns the expanding universe. Einstein’s equations for a flat,
isotropic and homogeneous universe can be written as

ä

a
= −

4π

3
(ρ+ 3p) +

Λ

3
, H ≡

(

ȧ

a

)

=

(

8π

3
ρ+

Λ

3

)1/2

,

where a is the scale factor measuring the expansion of the universe (ȧ > 0), ρ and p are,
respectively, the time-dependent energy density and pressure of matter, Λ is the
(non-negative) cosmological constant and H > 0 is the Hubble parameter. Use these
equations to establish the following: if Λ = 0 (or otherwise negligible) and ρ+ 3p > 0, the
acceleration ä < 0 and the graph of a(t) must be concave downward implying that a = 0
at a finite time in the past (the big bang). Using the tangent of the graph at the present
time, t = t0, show that the age of the universe is bounded above by H−1(t0).

Consider the physical situations of a matter-dominated universe (Λ = 0 and p = 0) and a
radiation-dominated universe (Λ = 0 and p = ρ/3). In each case, reduce the two
equations above to one single second-order differential equation for a that is homogeneous
in t (invariant under t → λt) and then show that there is a solution of the type a = tα.
Determine the value of α for each case and verify that ä < 0.
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Now consider a Λ-dominated expanding universe (ρ = 0 and p = 0). Show that a ∝ eβt

and determine the value of β. Verify that it corresponds to an accelerated universe
(ä > 0). This could describe the universe today and/or a very early period of exponential
expansion known as inflation.

Comments and corrections may be sent by email to a.d.challinor@ast.cam.ac.uk
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