1. Compute the volume of a cone of height \(h \) and radius \(a \) using (a) cylindrical polars, (b) spherical polars.
2. By using a suitable change of variables, calculate the volume within an ellipsoid
 \[
 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1.
 \]
3. Let \((u, v, w)\) be a set of orthogonal curvilinear coordinates for \(\mathbb{R}^3 \). Show that
 \[
 dV = h_u h_v h_w \, du \, dv \, dw.
 \]
 Confirm that \(dV = \rho d\rho d\phi dz \) and \(dV = r^2 \sin \theta \, d\rho \, d\theta \, d\phi \) an cylindrical and spherical polars respectively.
4. Let \(f = f(x) \) be a scalar field and \(\mathbf{v} = \mathbf{v}(x) \) a vector field. Show, using suffix notation, that
 \[
 \nabla \cdot (f \mathbf{v}) = (\nabla f) \cdot \mathbf{v} + f(\nabla \cdot \mathbf{v}), \quad \nabla \times (f \mathbf{v}) = (\nabla f) \times \mathbf{v} + f(\nabla \times \mathbf{v}).
 \]
 Evaluate the divergence and curl of the following:
 \[
 r \mathbf{x}, \quad \mathbf{a} \times \mathbf{b}, \quad \mathbf{a} \times \mathbf{x}, \quad \mathbf{x}/r^3,
 \]
 where \(r = |\mathbf{x}| \) and \(\mathbf{a}, \mathbf{b} \) are constant vectors.
5. The vector field \(\mathbf{A} = \mathbf{A}(x) \) is, in Cartesian, cylindrical and spherical polar coordinates respectively,
 \[
 \mathbf{A}(x) = -\frac{1}{2} y \mathbf{e}_x + \frac{1}{2} x \mathbf{e}_y = \frac{1}{2} \rho \mathbf{e}_\phi = \frac{1}{2} r \sin \theta \mathbf{e}_\phi.
 \]
 Compute the \(\nabla \times \mathbf{A} \) in each different coordinate system and check that your answers agree.
6. Recall that in cylindrical polar coordinates
 \[
 \nabla = \mathbf{e}_\rho \frac{\partial}{\partial \rho} + \mathbf{e}_\phi \frac{1}{\rho} \frac{\partial}{\partial \phi} + \mathbf{e}_z \frac{\partial}{\partial z}
 \]
 while all other derivatives are zero. Derive expressions for the \(\nabla \cdot \mathbf{A} \) and \(\nabla \times \mathbf{A} \) where \(\mathbf{A} \) is an arbitrary vector field given in cylindrical polars by \(\mathbf{A} = A_\rho \mathbf{e}_\rho + A_\phi \mathbf{e}_\phi + A_z \mathbf{e}_z \). Also derive an expression for the Laplacian of a scalar function \(\nabla^2 f \) in this coordinate system.
7. Use suffix notation to show that
 \[
 \nabla \times (u \times v) = u(\nabla \cdot v) + (\nabla \cdot u)v - v(\nabla \cdot u) - (u \cdot \nabla)v,
 \]
 for vector fields \(u = u(x) \) and \(v = v(x) \). Show also that \((u \cdot \nabla)u = \nabla \left(\frac{1}{2} |u|^2 \right) - u \times (\nabla \times u) \).
8. Verify directly that the vector field
 \[
 u(x) = (e^x(x \cos y + \cos y - y \sin y), e^x(-x \sin y - \sin y - y \cos y), 0)
 \]
 is irrotational and express is as the gradient of a scalar field \(\phi \). Check that \(u \) is solenoidal and show that it can be written as the curl of the vector field \(v = (0, 0, \psi) \), for some function \(\psi \).
9. Consider the line integral
 \[
 I = \int_C -x^2 y \, dx + xy^2 \, dy
 \]
 for \(C \) a closed curve traversed anti-clockwise in the \((x, y)\)-plane.
 (i) Evaluate \(I \) when \(C \) is a circle of radius \(R \) centred at the origin. Use Green’s theorem to relate the results for \(R = b \) and \(R = a \) to an area integral over an appropriate region, and calculate the area integral directly.
 (ii) Now suppose \(C \) is the boundary of a square centred at the origin with sides of length \(\ell \). Show that \(I \) is independent of the orientation of the square in the \((x, y)\)-plane.
10. Verify Stokes’ theorem for the hemispherical shell \(S = \{ x^2 + y^2 + z^2 = 1, z \geq 0 \} \), and the vector field
\(\mathbf{F}(x) = (y, -x, z) \).

11. By applying Stokes’ theorem to the vector field \(a \times \mathbf{F} \) for a constant, or otherwise, show that for a vector field \(\mathbf{F} = \mathbf{F}(x) \)
\[\oint_C d\mathbf{x} \times \mathbf{F} = \int_S (d\mathbf{S} \times \nabla) \times \mathbf{F} \]
where \(C = \partial S \). Verify this result when \(C \) is the unit square in the \((x, y)\)-plane with opposite vertices at \((0, 0, 0)\) and \((1, 1, 0)\) and \(\mathbf{F}(x) = x \).

12. Let \(S = \{ x : |x| = 1 \} \). For the vector field \(\mathbf{F}(x) = x/r^3 \), where \(r = |x| \), compute the integral
\[\int_S \mathbf{F} \cdot d\mathbf{S} \]
Deduce that there does not exist a vector potential for \(\mathbf{F} \). Compute \(\nabla \cdot \mathbf{F} \) and comment on your result.

Additional problems
These questions should not be attempted at the expense of earlier ones.

13. Compute the volume of the region \(V \) defined by the intersection of the three cylinders
\(V = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 1, y^2 + z^2 \leq 1, z^2 + x^2 \leq 1 \} \).

14. Let \(\mathbf{F}(x) = x/r^3 \) as in question 12. Consider the vector field
\(\mathbf{A}(x) = \left(\frac{yz}{(x^2 + y^2)^{3/2}}, \frac{zz}{(x^2 + y^2)^{3/2}}, \frac{xx}{(x^2 + y^2)^{3/2}} \right) \).
Show that \(\nabla \times \mathbf{A} = \mathbf{F} \). Does this contradict the result of question 12? Reconcile these results by applying Stokes’ theorem on the surface \(S = \{ x : |x| = 1, x^2 + y^2 \geq 1 \} \) and taking a suitable limit.
Hint: you may find cylindrical or spherical polar coordinates helpful for this question.

15. Suppose \(\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3 \) is a solenoidal vector field, i.e. \(\nabla \cdot \mathbf{F} = 0 \). Show that \(\mathbf{F} = \nabla \times \mathbf{A} \) where
\[\mathbf{A}(x) = \int_0^1 \mathbf{F}(tx) \times (tx) \, dt. \]
This is called a homotopy formula. What goes wrong with this formula if \(\mathbf{F} \) is not defined on all of \(\mathbb{R}^3 \)?