1. Let \(\mathbf{F}(x) = (x^3 + 3y + z^2, y^3, x^2 + y^2 + 3z^2) \) and let \(S \) be the open surface
\[
1 - z = x^2 + y^2, \quad 0 \leq z \leq 1.
\]
Use the divergence theorem and cylindrical polar coordinates to evaluate \(\int_S \mathbf{F} \cdot d\mathbf{S} \). Verify your result by calculating the area integral directly. *Hint: you should find that* \(d\mathbf{S} = (2\rho \cos \phi, 2\rho \sin \phi, 1) \rho \, d\rho \, d\phi \).

2. By applying the divergence theorem to the vector field \(\mathbf{a} \times \mathbf{A} \), where \(\mathbf{a} \) is an arbitrary constant vector and \(\mathbf{A} = \mathbf{A}(x) \) is a vector field, show that
\[
\int_S \nabla \times \mathbf{A} \, dV = \int_S d\mathbf{S} \times \mathbf{A}
\]
where \(S = \partial V \). Verify this result when \(V = \{(x, y, z) : 0 < x < a, 0 < y < b, 0 < z < c\} \) and \(\mathbf{A}(x) = (z, 0, 0) \).

3. The scalar field \(\varphi = \varphi(r) \) only depends on \(r = |x| \). Use Cartesian coordinates and suffix notation to show
\[
\nabla \varphi = \varphi'(r) \frac{x}{r}, \quad \nabla^2 \varphi = \varphi''(r) + \frac{2}{r} \varphi'(r).
\]
Verify this result using your expression for the Laplacian in spherical polar coordinates. Solve the equation
\[
\begin{aligned}
\nabla^2 \varphi &= 1, \quad r < a \\
\varphi &= 1, \quad r = a.
\end{aligned}
\]

4. (a) Using Cartesian coordinates \((x, y)\), find all solutions of Laplace’s equation \(\nabla^2 \varphi = 0 \) in two dimensions of the form \(\varphi(x, y) = f(x)e^{\alpha y} \), with \(\alpha \) constant. Hence find a solution on the region \(0 < x < a \) and \(y > 0 \) with boundary conditions:
\[
\varphi(0, y) = \varphi(a, y) = 0, \quad \varphi(x, 0) = \lambda \sin(\pi x/a), \quad \varphi(x, y) \to 0 \text{ as } y \to \infty.
\]
(b) Using the formula for the Laplacian in plane polar coordinates \((r, \theta)\), verify that Laplace’s equation in the plane has solutions of the form \(\varphi(r, \theta) = Ar^\alpha \cos \beta \theta \), if \(\alpha \) and \(\beta \) are related appropriately. Hence find solutions on the following regions, with the given boundary conditions (\(\lambda \) a constant):

(i) \(r < a \), \quad \varphi(a, \theta) = \lambda \cos \theta, \\
(ii) \(r > a \), \quad \varphi(a, \theta) = \lambda \cos \theta, \quad \varphi(r, \theta) \to 0 \text{ as } r \to \infty, \\
(iii) \(a < r < b \), \quad \frac{\partial \varphi}{\partial r}(a, \theta) = 0, \quad \varphi(b, \theta) = \lambda \cos 2\theta.

5. Consider a complex valued function \(f = \varphi(x, y) + i\psi(x, y) \) satisfying \(\partial f/\partial \bar{z} = 0 \), where \(\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \). Show that \(\nabla^2 \varphi = \nabla^2 \psi = 0 \). Show also that a curve on which \(\psi \) is constant is orthogonal to a curve on which \(\psi \) is constant, at a point where they intersect. Find \(\varphi \) and \(\psi \) when \(f = ze^z, \quad z = x + iy \), and compare with question 8 on sheet 2.

6. Use Gauss’ flux method to find the electric field \(\mathbf{E} = \mathbf{E}(x) \) due to a spherically symmetric charge density
\[
\rho(r) = \begin{cases}
0, & 0 \leq r \leq a \\
\rho_0 r/a, & a < r < b, \\
0, & r \geq b.
\end{cases}
\]

Now find the electric potential \(\phi = \phi(r) \) directly from Poisson’s equation by writing down the general, spherically symmetric solution to Laplace’s equation in each of the intervals \(0 < r < a, \ a < r < b \) and \(r > b \), and adding a particular integral where necessary. You should assume that \(\phi \) and \(\phi' \) are continuous at \(r = a \) and \(r = b \). Check this solution gives rise to the same electric field using \(\mathbf{E} = -\nabla \phi \).
7. For the electric and magnetic fields $\mathbf{E} = \mathbf{E}(x, t)$ and $\mathbf{B} = \mathbf{B}(x, t)$ define the quantities

$$U = \frac{1}{2} \left(\varepsilon_0 |\mathbf{E}|^2 + \frac{1}{\mu_0} |\mathbf{B}|^2 \right), \quad \mathbf{P} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}.$$

Use Maxwell's equations with $\mathbf{J} = 0$ to establish the conservation law $\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{P} = 0$.

8. Let φ and ψ be scalar functions. Using an integral theorem, establish *Green's second identity*

$$\int_V (\psi \nabla^2 \varphi - \varphi \nabla^2 \psi) \, dV = \int_{\partial V} (\varphi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \varphi}{\partial n}) \, dS.$$

9. Show that the solution to the following boundary value problem is unique

$$\begin{cases} -\nabla^2 \varphi + \varphi = \rho, & \text{in } \Omega, \\ \varphi = 0 & \text{on } \partial \Omega, \\ \frac{\partial \varphi}{\partial n} = f, & \text{on } \partial \Omega. \end{cases}$$

10. Show that the solution to the following boundary value problem is unique

$$\begin{cases} \nabla^2 \varphi = 0, & \text{in } \Omega, \\ g(\partial \varphi/\partial n) + \varphi = f, & \text{on } \partial \Omega, \end{cases}$$

assuming that $g \geq 0$ on $\partial \Omega$. Find a non-zero solution to Laplace’s equation on $|x| \leq 1$ which satisfies the boundary conditions above with $f = 0$ and $g = -1$ on $|x| = 1$.

11. Let u be harmonic on Ω and v a smooth function that satisfies $v = 0$ on $\partial \Omega$. Show that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dV = 0.$$

Now if w is any function on Ω with $w = u$ on $\partial \Omega$, show, by considering $v = w - u$, that

$$\int_{\Omega} |\nabla w|^2 \, dV \geq \int_{\Omega} |\nabla u|^2 \, dV.$$

Additional problems

These questions should not be attempted at the expense of earlier ones.

12. For $\epsilon > 0$ define $\Phi_\epsilon(x) = (|x| + \epsilon)^{-1}$. Show that

$$\nabla^2 \Phi_\epsilon(x) = \frac{-2\epsilon}{|x| (|x| + \epsilon)^3}.$$

If φ is a scalar function that decays rapidly as $|x| \to \infty$ and $a \in \mathbb{R}^3$ is fixed, compute the limit

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^3} \varphi(x) \nabla^2 \Phi_\epsilon(x - a) \, dV.$$

Deduce that $\nabla^2 \left(-\frac{1}{4\pi} \frac{1}{|x - a|} \right) = \delta(x - a)$.

13. Show that a harmonic function φ at the point a is equal to the average of its values on the interior of the ball $B_r(a) = \{x : |x - a| < r\}$, for any $r > 0$. By considering $\nabla \varphi$ and the previous result for large r, or otherwise, prove that if φ is bounded and harmonic on \mathbb{R}^3 then it is constant.

14. (Harder) For a volume V with smooth boundary S, establish the identity $\text{vol}(V) = \frac{1}{3} \int_S \mathbf{v} \cdot dS$. Suppose now that $V = V(t)$, and the velocity of a point x in V is $\mathbf{v}(x)$. Show that

$$\frac{d}{dt} \text{vol}(V(t)) = \int_{V(t)} \frac{\partial \rho}{\partial t} \, dV + \int_{S(t)} \rho \mathbf{v} \cdot dS.$$

Using this result, or otherwise, obtain *Reynold’s Transport Theorem* for a scalar function $\rho = \rho(x, t)$:

$$\frac{d}{dt} \int_{V(t)} \rho \, dV = \int_{V(t)} \frac{\partial \rho}{\partial t} \, dV + \int_{S(t)} \rho \mathbf{v} \cdot dS.$$

Interpret this result.