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Dr R. E. Hunt

Comments on or corrections to this example sheet are very welcome and may be sent to reh10@cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Integral Theorems

1. Verify Stokes’ theorem for the hemispherical shell 𝑆 = {𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ⩾ 0} and the vector
field F(x) = (𝑦,−𝑥, 𝑧).

2. Verify Stokes’ theorem for the open surface defined in cylindrical polar coordinates by 𝜌+𝑧 = 𝑎,
𝑧 ⩾ 0, where 𝑎 is a positive constant, and the vector field F(x) = (𝑦,−𝑥, 𝑥𝑦𝑧).

3. Calculate∇×B for the vector field given in cylindrical polars by B(x) = 𝜌−1e𝜙. Also find
∮
𝐶

B .dx
where 𝐶 is the circle 𝜌 = 1, 𝑧 = 0. Does Stokes’ Theorem apply?

4. Let 𝑆 = {x ∈ R3 : |x| = 1}. For the vector field F(x) = x/𝑟3, where 𝑟 = |x|, compute the integral∫
𝑆

F . dS. Deduce that there does not exist a vector potential for F, i.e., there is no vector field
A(x) such that F = ∇ × A. Compute ∇ . F and comment on your result.

5. Let 𝜙 and 𝜓 be scalar functions defined in a volume 𝑉 and on its surface. Using an integral
theorem, establish Green’s second identity∫

𝑉

(𝜓∇2𝜙 − 𝜙∇2𝜓)d𝑉 =

∫
𝜕𝑉

(
𝜓
𝜕𝜙

𝜕n
− 𝜙

𝜕𝜓

𝜕n

)
d𝑆.

6. Let F(x) = (𝑥3 + 3𝑦 + 𝑧2 , 𝑦3 , 𝑥2 + 𝑦2 + 3𝑧2) and let 𝑆 be the open surface 1− 𝑧 = 𝑥2 + 𝑦2, 0 ⩽ 𝑧 ⩽ 1.
Sketch 𝑆, then use the divergence theorem and cylindrical polar coordinates to evaluate

∫
𝑆

F .dS.
Verify your result by calculating the area integral directly.

7. By applying the divergence theorem to k×A, where k is an arbitrary constant vector and A(x) is
a vector field defined in a volume 𝑉 and on its surface, show that∫

𝑉

∇ × A d𝑉 =

∫
𝜕𝑉

dS × A.

Verify this result when 𝑉 = {(𝑥, 𝑦, 𝑧) : 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏, 0 < 𝑧 < 𝑐} and A(x) = (𝑧, 0, 0).
[You should find that both integrals equal (0, 𝑎𝑏𝑐, 0).]

8. By applying Stokes’ theorem to the vector field a × F for any constant vector a, or otherwise,
show that for a vector field F(x), ∮

𝐶

dx × F =

∫
𝑆

(dS × ∇) × F

where 𝑆 is any suitable surface and 𝐶 = 𝜕𝑆. Verify this result when F(x) = x and 𝐶 is the unit
square in the (𝑥, 𝑦)-plane with opposite vertices at (0, 0, 0) and (1, 1, 0).

∗ 9. Let 𝑓 be a scalar field and F a vector field defined on a volume 𝑉 . By applying the divergence
theorem to suitable vector fields, prove that:

(i) If 𝑓 is constant on 𝜕𝑉 then
∫
𝑉
∇𝑓 d𝑉 = 0.

(ii) If ∇ . F = 0 in 𝑉 and F . n = 0 on 𝜕𝑉 then
∫
𝑉

F d𝑉 = 0.



Conservation Laws

10. For electric and magnetic fields E(x, 𝑡) and B(x, 𝑡), define the quantities 𝑈 = 1
2 (𝜖0|E|2 + 𝜇−1

0 |B|2)
and P = 𝜇−1

0 E × B. Use Maxwell’s equations with J = 0 to establish the conservation law
𝜕𝑈/𝜕𝑡 + ∇ . P = 0.
If 𝑈 has the interpretation of the energy density stored in the electromagnetic fields, what is
the interpretation of the Poynting vector P?

Laplace’s and Poisson’s Equations

11. The scalar field 𝜑 = 𝜑(𝑟) only depends on 𝑟 = |x| in R3. Use Cartesian coordinates and suffix
notation to show that

∇𝜑 = 𝜑′(𝑟)
x
𝑟
, ∇2𝜑 = 𝜑′′(𝑟) +

2
𝑟
𝜑′(𝑟).

Verify this result using your expression for the Laplacian in spherical polar coordinates.
Solve the equation ∇2𝜑 = 1 in 𝑟 < 𝑎, subject to 𝜑 = 1 on 𝑟 = 𝑎.
What are the equivalent results in R2?

12. (i) Using Cartesian coordinates (𝑥, 𝑦), find all solutions of Laplace’s equation ∇2𝜙 = 0 in two
dimensions of the form 𝜙(𝑥, 𝑦) = 𝑓 (𝑥)𝑒𝛼𝑦 , with 𝛼 constant. Hence find a solution on the
region 0 < 𝑥 < 𝑎, 𝑦 > 0 with boundary conditions

𝜙(0, 𝑦) = 𝜙(𝑎, 𝑦) = 0, 𝜙(𝑥, 0) = sin(𝜋𝑥/𝑎), 𝜙(𝑥, 𝑦) → 0 as 𝑦 → ∞.

(ii) Using the formula for the Laplacian in plane polar coordinates (𝑟, 𝜃), verify that Laplace’s
equation in the plane has solutions of the form 𝜙(𝑟, 𝜃) = 𝐴𝑟𝛼 cos 𝛽𝜃 if 𝛼 and 𝛽 are related
appropriately. Hence find solutions on the following regions:
(a) 𝑟 < 𝑎, subject to 𝜙(𝑎, 𝜃) = cos𝜃;
(b) 𝑟 > 𝑎, subject to 𝜙(𝑎, 𝜃) = cos𝜃, 𝜙(𝑟, 𝜃) → 0 as 𝑟 → ∞;
(c) 𝑎 < 𝑟 < 𝑏, subject to 𝜕𝜙/𝜕n = 0 on 𝑟 = 𝑎, 𝜙(𝑏, 𝜃) = cos 2𝜃.

13. Use Gauss’ flux method to find the electric field due to a spherically symmetric charge density

𝜌(𝑟) =


0 0 ⩽ 𝑟 ⩽ 𝑎,

𝜌0𝑟/𝑎 𝑎 < 𝑟 < 𝑏,

0 𝑟 ⩾ 𝑏.

Now find the electric potential 𝜙(𝑟) directly from Poisson’s equation by writing down the general
spherically symmetric solution to Laplace’s equation in each of the three intervals, and adding
a particular integral where necessary. You should assume that 𝜙 and 𝜙′ are continuous at 𝑟 = 𝑎

and 𝑟 = 𝑏. Check that this solution gives rise to the same electric field using E = −∇𝜙.

14. Let 𝑢 be harmonic in a domain 𝒟 and 𝑣 be a smooth function satisfying 𝑣 = 0 on 𝜕𝒟. Show
that ∫

𝒟

∇𝑢 .∇𝑣 d𝑉 = 0.

Now if 𝑤 is any smooth function in 𝒟 with 𝑤 = 𝑢 on 𝜕𝒟, show, by considering 𝑣 = 𝑤 − 𝑢, that∫
𝒟

|∇𝑤 |2 d𝑉 ⩾
∫
𝒟

|∇𝑢 |2 d𝑉 ;

that is to say, the solution of Laplace’s equation minimises this integral.

∗ 15. Show that at any point a, a given harmonic function 𝜙 is equal to the average of its values in
the ball 𝐵𝑟(a) = {x : |x − a| < 𝑟}, for any 𝑟 > 0. By using this result for large 𝑟 and considering
∇𝜙, or otherwise, prove that if 𝜙 is bounded and harmonic on R3 then it is constant.


