Vector Calculus: Example Sheet 3 Part IA, Lent Term 2025 Dr R. E. Hunt

Comments on or corrections to this example sheet are very welcome and may be sent to reh10@cam.ac.uk. Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Integral Theorems

- **1.** Verify Stokes' theorem for the hemispherical shell $S = \{x^2 + y^2 + z^2 = 1, z \ge 0\}$ and the vector field $\mathbf{F}(\mathbf{x}) = (y, -x, z)$.
- **2.** Verify Stokes' theorem for the open surface defined in cylindrical polar coordinates by $\rho + z = a$, $z \ge 0$, where *a* is a positive constant, and the vector field $\mathbf{F}(\mathbf{x}) = (y, -x, xyz)$.
- **3.** Calculate $\nabla \times \mathbf{B}$ for the vector field given in cylindrical polars by $\mathbf{B}(\mathbf{x}) = \rho^{-1} \mathbf{e}_{\phi}$. Also find $\oint_C \mathbf{B} \cdot d\mathbf{x}$ where *C* is the circle $\rho = 1, z = 0$. Does Stokes' Theorem apply?
- **4.** Let $S = \{\mathbf{x} \in \mathbb{R}^3 : |\mathbf{x}| = 1\}$. For the vector field $\mathbf{F}(\mathbf{x}) = \mathbf{x}/r^3$, where $r = |\mathbf{x}|$, compute the integral $\int_S \mathbf{F} \cdot \mathbf{dS}$. Deduce that there *does not* exist a vector potential for \mathbf{F} , i.e., there is no vector field $\mathbf{A}(\mathbf{x})$ such that $\mathbf{F} = \nabla \times \mathbf{A}$. Compute $\nabla \cdot \mathbf{F}$ and comment on your result.
- **5.** Let ϕ and ψ be scalar functions defined in a volume *V* and on its surface. Using an integral theorem, establish *Green's second identity*

$$\int_{V} (\psi \nabla^{2} \phi - \phi \nabla^{2} \psi) \, \mathrm{d}V = \int_{\partial V} \left(\psi \frac{\partial \phi}{\partial \mathbf{n}} - \phi \frac{\partial \psi}{\partial \mathbf{n}} \right) \, \mathrm{d}S$$

- **6.** Let $\mathbf{F}(\mathbf{x}) = (x^3 + 3y + z^2, y^3, x^2 + y^2 + 3z^2)$ and let *S* be the *open* surface $1 z = x^2 + y^2, 0 \le z \le 1$. Sketch *S*, then use the divergence theorem and cylindrical polar coordinates to evaluate $\int_S \mathbf{F} \cdot d\mathbf{S}$. Verify your result by calculating the area integral directly.
- **7.** By applying the divergence theorem to **k**×**A**, where **k** is an arbitrary constant vector and **A**(**x**) is a vector field defined in a volume *V* and on its surface, show that

$$\int_{V} \nabla \times \mathbf{A} \, \mathrm{d}V = \int_{\partial V} \mathrm{d}\mathbf{S} \times \mathbf{A}.$$

Verify this result when $V = \{(x, y, z) : 0 < x < a, 0 < y < b, 0 < z < c\}$ and $\mathbf{A}(\mathbf{x}) = (z, 0, 0)$. [You should find that both integrals equal (0, abc, 0).]

8. By applying Stokes' theorem to the vector field $\mathbf{a} \times \mathbf{F}$ for any constant vector \mathbf{a} , or otherwise, show that for a vector field $\mathbf{F}(\mathbf{x})$,

$$\oint_C \mathbf{d}\mathbf{x} \times \mathbf{F} = \int_S (\mathbf{d}\mathbf{S} \times \nabla) \times \mathbf{F}$$

where *S* is any suitable surface and $C = \partial S$. Verify this result when $\mathbf{F}(\mathbf{x}) = \mathbf{x}$ and *C* is the unit square in the (x, y)-plane with opposite vertices at (0, 0, 0) and (1, 1, 0).

- * 9. Let *f* be a scalar field and **F** a vector field defined on a volume *V*. By applying the divergence theorem to suitable vector fields, prove that:
 - (i) If *f* is constant on ∂V then $\int_{V} \nabla f \, dV = \mathbf{0}$.
 - (ii) If $\nabla \cdot \mathbf{F} = 0$ in *V* and $\mathbf{F} \cdot \mathbf{n} = 0$ on ∂V then $\int_{V} \mathbf{F} \, dV = \mathbf{0}$.

Conservation Laws

10. For electric and magnetic fields $\mathbf{E}(\mathbf{x}, t)$ and $\mathbf{B}(\mathbf{x}, t)$, define the quantities $U = \frac{1}{2}(\epsilon_0 |\mathbf{E}|^2 + \mu_0^{-1} |\mathbf{B}|^2)$ and $\mathbf{P} = \mu_0^{-1} \mathbf{E} \times \mathbf{B}$. Use Maxwell's equations with $\mathbf{J} = \mathbf{0}$ to establish the conservation law $\partial U / \partial t + \nabla \cdot \mathbf{P} = 0$.

If *U* has the interpretation of the energy density stored in the electromagnetic fields, what is the interpretation of the *Poynting vector* **P**?

Laplace's and Poisson's Equations

11. The scalar field $\varphi = \varphi(r)$ only depends on $r = |\mathbf{x}|$ in \mathbb{R}^3 . Use Cartesian coordinates and suffix notation to show that

$$\nabla \varphi = \varphi'(r) \frac{\mathbf{x}}{r}, \quad \nabla^2 \varphi = \varphi''(r) + \frac{2}{r} \varphi'(r).$$

Verify this result using your expression for the Laplacian in spherical polar coordinates.

Solve the equation $\nabla^2 \varphi = 1$ in r < a, subject to $\varphi = 1$ on r = a.

What are the equivalent results in \mathbb{R}^2 ?

12. (i) Using Cartesian coordinates (x, y), find all solutions of Laplace's equation $\nabla^2 \phi = 0$ in two dimensions of the form $\phi(x, y) = f(x)e^{\alpha y}$, with α constant. Hence find a solution on the region 0 < x < a, y > 0 with boundary conditions

$$\phi(0, y) = \phi(a, y) = 0$$
, $\phi(x, 0) = \sin(\pi x/a)$, $\phi(x, y) \to 0$ as $y \to \infty$.

- (ii) Using the formula for the Laplacian in plane polar coordinates (r, θ) , verify that Laplace's equation in the plane has solutions of the form $\phi(r, \theta) = Ar^{\alpha} \cos \beta \theta$ if α and β are related appropriately. Hence find solutions on the following regions:
 - (a) r < a, subject to $\phi(a, \theta) = \cos \theta$;
 - (b) r > a, subject to $\phi(a, \theta) = \cos \theta$, $\phi(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$;
 - (c) a < r < b, subject to $\partial \phi / \partial \mathbf{n} = 0$ on r = a, $\phi(b, \theta) = \cos 2\theta$.
- 13. Use Gauss' flux method to find the electric field due to a spherically symmetric charge density

$$\rho(r) = \begin{cases} 0 & 0 \le r \le a, \\ \rho_0 r/a & a < r < b, \\ 0 & r \ge b. \end{cases}$$

Now find the electric potential $\phi(r)$ *directly* from Poisson's equation by writing down the general spherically symmetric solution to Laplace's equation in each of the three intervals, and adding a particular integral where necessary. You should assume that ϕ and ϕ' are continuous at r = a and r = b. Check that this solution gives rise to the same electric field using $\mathbf{E} = -\nabla \phi$.

14. Let *u* be harmonic in a domain \mathcal{D} and *v* be a smooth function satisfying v = 0 on $\partial \mathcal{D}$. Show that

$$\int_{\mathscr{D}} \nabla u \cdot \nabla v \, \mathrm{d} V = 0.$$

Now if *w* is any smooth function in \mathcal{D} with w = u on $\partial \mathcal{D}$, show, by considering v = w - u, that

$$\int_{\mathscr{D}} |\nabla w|^2 \, \mathrm{d}V \ge \int_{\mathscr{D}} |\nabla u|^2 \, \mathrm{d}V,$$

that is to say, the solution of Laplace's equation minimises this integral.

* **15.** Show that at any point **a**, a given harmonic function ϕ is equal to the average of its values in the ball $B_r(\mathbf{a}) = \{\mathbf{x} : |\mathbf{x} - \mathbf{a}| < r\}$, for any r > 0. By using this result for large r and considering $\nabla \phi$, or otherwise, prove that if ϕ is bounded and harmonic on \mathbb{R}^3 then it is constant.