Notes on Calculus and Coordinates

Single Variable Calculus $\mathbf{R} \rightarrow \mathbf{R}$

- A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at x if

$$
f(x+h)=f(x)+m h+\mathrm{o}(h) \quad \text { as } \quad h \rightarrow 0
$$

for some real number m. This number is the derivative of f at x :

$$
m=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}\{f(x+h)-f(x)\}
$$

The definition says that f can be approximated in a neighbourhood of x by a line (the tangent to the graph of f at x, with gradient m). This is a local linearisation of f.
[Recall little-o notation: $a(h)=b(h)+\mathrm{o}(h)$ as $h \rightarrow 0$ iff $(a(h)-b(h)) / h \rightarrow 0$ as $h \rightarrow 0$.]

- Setting $y=f(x)$ and $m=\mathrm{d} y / \mathrm{d} x$, the statement that the function is differentiable becomes

$$
\delta y=\frac{\mathrm{d} y}{\mathrm{~d} x} \delta x+\mathrm{o}(\delta x) \quad \text { as } \quad \delta x \rightarrow 0, \quad \text { or } \quad \mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x
$$

The use of differentials allows a convenient abbreviation of the first equation, in which the o-term and limit are suppressed.

- A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is smooth if it can be differentiated any number of times, so that $f^{\prime}(x), f^{\prime \prime}(x), \ldots$, all exist. The functions we deal with will be smooth except where things go wrong in some obvious way, e.g. $y=1 / x$ is smooth except at $x=0$, where the function is not defined. We restrict definitions and results to some appropriate subset of \mathbf{R} whenever necessary.
- Taylor's Theorem for a smooth function f states:

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\ldots+\frac{1}{k!} f^{(k)}(x) h^{k}+\mathrm{O}\left(h^{k+1}\right)
$$

for any k, and for h in a suitable range [e.g. x and $x+h$ in any closed interval contained within an open interval on which f is smooth]. This does not imply that f has a convergent power series expansion, in general; nevertheless, this will often be the case for the functions we meet.

- If $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are smooth functions, then $f \circ g: \mathbf{R} \rightarrow \mathbf{R}$ is also smooth, and its derivative at a point u is given by the Chain Rule:

$$
(f \circ g)^{\prime}(u)=f^{\prime}(g(u)) g^{\prime}(u)
$$

Setting $y=f(x)$ and $x=g(u)$, the Chain Rule can also be expressed

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} u} \quad \text { or } \quad \frac{\mathrm{d}}{\mathrm{~d} u}=\frac{\mathrm{d} x}{\mathrm{~d} u} \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

where the differential operators act on any function which depends on u only through x.

- The Riemann integral of a smooth function F over an interval $a \leq x \leq b$ is the limit of a sum

$$
\int_{a}^{b} F(x) \mathrm{d} x=\lim _{\ell \rightarrow 0} \sum_{I} F\left(x_{I}^{*}\right) \delta x_{I}
$$

which can be defined as follows. Given any ℓ, partition the interval $[a, b]$ into N segments, labelled by I, so that each segment is of length $\delta x_{I} \leq \ell$, and choose any points x_{I}^{*} in each segment. As $\ell \rightarrow 0$ (implying $N \rightarrow \infty$) the partition into segments becomes finer and finer. The limit is independent of all the choices made when F is smooth (or with much weaker assumptions, in fact).

- Fundamental Theorem of Calculus. If $F=f^{\prime}$ for some smooth function f then

$$
\int_{a}^{b} F(x) \mathrm{d} x=f(b)-f(a)
$$

Understanding how this generalises to higher dimensions is one of our main objectives.

Many Variable Calculus $\mathbf{R}^{n} \rightarrow \mathbf{R}$

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at x_{ℓ} (a point in \mathbf{R}^{n} with these coordinates) iff

$$
f\left(x_{\ell}+h_{\ell}\right)=f\left(x_{\ell}\right)+m_{i} h_{i}+\mathrm{o}(h) \quad \text { as } \quad h=\left(h_{i} h_{i}\right)^{1 / 2} \rightarrow 0
$$

for some real numbers m_{i}. These are the partial derivatives of f at x_{ℓ} :

$$
m_{i}=\frac{\partial f}{\partial x_{i}}
$$

with m_{i} calculated by keeping x_{j} fixed for $j \neq i$.
[A subtle point: The definition appears to depend on a notion of length, h, for the change in coordinates h_{i}. In fact we could make other choices, e.g. $h=\sum_{i}\left|h_{i}\right|$ or $h=\max \left(h_{i}\right)$, and it would make no difference to whether the function is differentiable.]

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is smooth if successive partial derivatives exist to all orders:

$$
\frac{\partial f}{\partial x_{i}}, \quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}, \ldots
$$

The order in which the derivatives are taken is then unimportant, so partial derivatives are totally symmetric, e.g.

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

- Taylor's Theorem for a smooth function of n variables states:

$$
f\left(x_{\ell}+h_{\ell}\right)=f\left(x_{\ell}\right)+\frac{\partial f}{\partial x_{i}} h_{i}+\frac{1}{2} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} h_{i} h_{j}+\ldots+\frac{1}{k!} \frac{\partial^{k} f}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}} h_{i_{1}} \ldots h_{i_{k}}+\mathrm{O}\left(h^{k+1}\right)
$$

with appropriate ranges for each h_{i}.

Notes on Forces, Fields and Potentials

Newton's Law and Coulomb's Law

- Newton's Second Law of Motion governs the behaviour of a particle of mass m, position $\mathbf{r}(t)$, subject to a force $\mathbf{F}(\mathbf{r})$:

$$
m \ddot{\mathbf{r}}(t)=\mathbf{F}(\mathbf{r})
$$

Given $\mathbf{F}(\mathbf{r})$, this equation can be solved (in principle) to find $\mathbf{r}(t)$ subject to suitable initial conditions (e.g. specifying $\mathbf{r}(0)$ and $\dot{\mathbf{r}}(0))$.

- The gravitational force between two particles depends on their masses (SI unit kg). Newton's Law of Gravitation states that the force on a particle of mass m at position \mathbf{r}, due to a particle of mass M at the origin, is:

$$
\mathbf{F}(\mathbf{r})=-G \frac{M m}{r^{2}} \hat{\mathbf{r}}=-G \frac{M m}{r^{3}} \mathbf{r}
$$

where $\hat{\mathbf{r}}$ is a unit vector in the direction of \mathbf{r}. Newton's constant is $G \approx 6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$. Newton's Law of Gravitation holds independently of the motion of the particles.

- The electromagnetic force between two particles depends on their electric charges (SI unit Coulomb, C). The force also depends on how the charges move, in general, and not just on their relative position. In the electrostatic case, however, when the charges are at rest, Coulomb's Law states that the force on a particle of charge q which is stationary at \mathbf{r}, due to a particle of charge Q stationary at the origin, is:

$$
\mathbf{F}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{r^{3}} \mathbf{r}
$$

The factor of 4π is conventional, and the strength of the interaction is given by a constant called the vacuum permittivity, $\epsilon_{0} \approx 8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$.

- Both forces above obey an inverse square law and the formulas are identical, up to an overall constant, if the roles of mass and charge are interchanged. A difference of sign means that all masses attract under gravity, while like charges repel and unlike charges attract.

Fields and Sources

- The total gravitational or electrostatic force $\mathbf{F}(\mathbf{r})$ produced by some general distribution of masses or charges is the sum of the forces due to each individual mass or charge in the distribution. The result is then proportional to the mass m or charge q of any particle on which the force acts; so by setting

$$
\mathbf{F}(\mathbf{r})=m \mathbf{g}(\mathbf{r}) \quad \text { or } \quad \mathbf{F}(\mathbf{r})=q \mathbf{E}(\mathbf{r})
$$

we can define the gravitational field $\mathbf{g}(\mathbf{r})$ (the gravitational force per unit mass) and the electric field $\mathbf{E}(\mathbf{r})$ (the electrostatic force per unit charge) which depend just on the distribution producing
the force, independent of the particular mass or charge on which it is acting. The fields \mathbf{g} or \mathbf{E} are said to be generated by the distribution, which is said to be a source for these fields.

- Newton's Law and Coulomb's Law now become the following results for gravitational or electric fields due to a point mass M or point charge Q at the origin:

$$
\mathbf{g}(\mathbf{r})=-G M \frac{1}{r^{2}} \hat{\mathbf{r}} \quad \text { or } \quad \mathbf{E}(\mathbf{r})=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \hat{\mathbf{r}} .
$$

- A special aspect of gravity is that the same mass m appears both in Newton's Law of Gravitation and in Newton's Law of Motion. The gravitational field $\mathbf{g}(\mathbf{r})$ is therefore just the acceleration due to gravity. (This equality of inertial and gravitational mass is the first hint of a modified, purely geometrical theory of gravity, General Relativity.)
- The electromagnetic force on a moving charge q depends on both the electric field \mathbf{E} and the magnetic field \mathbf{B} produced by all other charges and currents. It is called the Lorentz Force:

$$
\mathbf{F}=q(\mathbf{E}+\dot{\mathbf{r}} \times \mathbf{B}) .
$$

Potentials and Poisson's Equation

Topics in this section will be covered more fully in the lectures; this is summary.

- Gravitational and electrostatic forces are conservative, so

$$
\nabla \times \mathbf{F}=\mathbf{0}, \quad \mathbf{F}(\mathbf{r})=-\nabla V
$$

where the scalar function $V(\mathbf{r})$ is the potential energy. It follows that the fields \mathbf{g} and \mathbf{E} are also conservative:

$$
\begin{array}{ll}
\nabla \times \mathbf{g}=\mathbf{0}, & \nabla \times \mathbf{E}=\mathbf{0} \\
\mathbf{g}=-\nabla \varphi, & \mathbf{E}=-\nabla \varphi
\end{array}
$$

where $\varphi(\mathbf{r})$ is called the gravitational potential or the electrostatic potential. These scalar fields are the potential energy per unit mass or per unit charge.

- Directly from Newton's Law or Coulomb's Law, the gravitational or electrostatic potential due to a point mass M or point charge Q at the origin is:

$$
\varphi(\mathbf{r})=-G M \frac{1}{r} \quad \text { or } \quad \varphi(\mathbf{r})=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r} .
$$

- A general distribution of mass or charge can be defined by a scalar field $\rho(\mathbf{r})$, the mass or charge density. The fields \mathbf{g} or \mathbf{E} are determined from ρ by Gauss's Law; in its differential form, this states:

$$
\nabla \cdot \mathbf{g}=-4 \pi G \rho \quad \text { or } \quad \nabla \cdot \mathbf{E}=\rho / \epsilon_{0}
$$

Expressing this in terms of potentials gives Poisson's equation:

$$
\nabla^{2} \varphi=4 \pi G \rho \quad \text { or } \quad \nabla^{2} \varphi=-\rho / \epsilon_{0}
$$

Given a source $\rho(\mathbf{r})$, solving Poisson's equation for $\varphi(\mathbf{r})$ enables us to find the corresponding gravitational or electrostatic field.

- In any region where the source ρ is zero, Poisson's equation reduces to Laplace's equation:

$$
\nabla^{2} \varphi=0
$$

Notes on the Geometry of Curves

- Consider a curve C parametrised by arc-length, with position vector $\mathbf{r}(s)$ and unit tangent vector

$$
\mathbf{t}(s)=\mathbf{r}^{\prime}(s)=\mathrm{d} \mathbf{r} / \mathrm{d} s
$$

If \mathbf{t} is constant then C is a straight line, $\mathbf{r}(s)=\mathbf{r}(0)+s \mathbf{t}$. In general, $\mathbf{t}^{\prime}(s)$ will be non-zero and it then specifies a direction perpendicular to C since, by differentiating,

$$
\mathbf{t}^{2}=1 \quad \Rightarrow \quad \mathbf{t} \cdot \mathbf{t}^{\prime}=0
$$

We use this to define a unit vector $\mathbf{n}(s)$, the principal normal, orthogonal to $\mathbf{t}(s)$, by setting

$$
\mathrm{d} \mathbf{t} / \mathrm{d} s=\kappa \mathbf{n}
$$

where $\kappa(s)$ is called the curvature. (The direction of \mathbf{n} can be chosen to make $\kappa>0$, but this is not essential.) The binormal is a third unit vector $\mathbf{b}(s)$ defined by

$$
\mathbf{b}=\mathbf{t} \times \mathbf{n} \quad \text { so } \quad\{\mathbf{t}, \mathbf{n}, \mathbf{b}\} \quad \text { is a right-handed orthonormal basis. }
$$

- Now consider how the basis $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ varies with s along C. Note that, again by differentiating,

$$
\begin{array}{lll}
\mathbf{n}^{2}=1 & \Rightarrow & \mathbf{n} \cdot \mathbf{n}^{\prime}=0 \\
\mathbf{b}^{2}=1 & \Rightarrow & \mathbf{b} \cdot \mathbf{b}^{\prime}=0
\end{array}
$$

so that, at each point on C, \mathbf{n}^{\prime} is a linear combination of \mathbf{t} and \mathbf{b}, while \mathbf{b}^{\prime} is a linear combination of \mathbf{t} and \mathbf{n}. But the coefficients in these linear combinations are also constrained by:

$$
\begin{array}{rll}
\mathbf{n} \cdot \mathbf{t}=0 & \Rightarrow & \mathbf{n} \cdot \mathbf{t}^{\prime}=-\mathbf{t} \cdot \mathbf{n}^{\prime}=\kappa \\
\mathbf{t} \cdot \mathbf{b}=0 & \Rightarrow & \mathbf{t} \cdot \mathbf{b}^{\prime}=-\mathbf{b} \cdot \mathbf{t}^{\prime}=0 \\
\mathbf{b} \cdot \mathbf{n}=0 & \Rightarrow & \mathbf{b} \cdot \mathbf{n}^{\prime}=-\mathbf{n} \cdot \mathbf{b}^{\prime}=\tau
\end{array}
$$

The results for the (related) inner-products in the first two lines follow immediately from the definition of \mathbf{n} in terms of \mathbf{t}^{\prime}, while the last line then serves to define a new quantity $\tau(s)$, called the torsion. Thus, the variation of the basis vectors with s is specified by two scalar functions $\kappa(s)$ and $\tau(s)$, according to the following Frenet-Serret equations:

$$
\begin{aligned}
\mathbf{t}^{\prime} & =\kappa \mathbf{n} \\
\mathbf{n}^{\prime} & =-\kappa \mathbf{t}+\tau \mathbf{b} \\
\mathbf{b}^{\prime} & =-\tau \mathbf{n}
\end{aligned}
$$

- The curvature $\kappa(s)$ and torsion $\tau(s)$ encode the geometry of the curve C. Some understanding of this is gained by considering a Taylor expansion of the curve around $s=0$:

$$
\mathbf{r}(s)=\mathbf{r}(0)+s \mathbf{t}+\frac{1}{2} s^{2} \kappa \mathbf{n}+\frac{1}{6} s^{3}\left(-\kappa^{2} \mathbf{t}+\kappa^{\prime} \mathbf{n}+\kappa \tau \mathbf{b}\right)+O\left(s^{4}\right)
$$

where the expressions for the coefficients follow just from the definitions given above and all are understood to be evaluated at $s=0$. To first order in s, the curve C is clearly approximated by its tangent line at $\mathbf{r}(0)$. To second order it can be approximated by a circle through $\mathbf{r}(0)$ which has radius $1 / \kappa$ and which lies in a plane spanned by \mathbf{t} and \mathbf{n}. To third order C leaves this plane at a rate which depends on τ.

Dr. J.M. Evans

Notes on Tensors, Multilinear Maps and the Quotient Rule

- Consider orthonormal bases and Cartesian coordinates related by

$$
\mathbf{e}_{i}^{\prime}=R_{i p} \mathbf{e}_{p}, \quad x_{i}^{\prime}=R_{i p} x_{p} \quad \text { where } \quad R_{i p} R_{j p}=R_{q i} R_{q j}=\delta_{i j}
$$

The components of any vector \mathbf{v} with respect to these bases satisfy

$$
\mathbf{v}=v_{p} \mathbf{e}_{p}=v_{i}^{\prime} \mathbf{e}_{i}^{\prime} \quad \text { where } \quad v_{i}^{\prime}=R_{i p} v_{p}, \quad v_{p}=R_{i p} v_{i}^{\prime}
$$

- A tensor T of rank n is equivalent to a multilinear map from n vectors to a scalar:

$$
T(\mathbf{a}, \mathbf{b}, \ldots, \mathbf{c})=T_{p q \ldots r} a_{p} b_{q} \ldots c_{r}=T_{i j \ldots k}^{\prime} a_{i}^{\prime} b_{j}^{\prime} \ldots c_{k}^{\prime}
$$

Specifying this scalar for any choice of $\mathbf{a}, \mathbf{b}, \ldots, \mathbf{c}$ determines the components $T_{p q \ldots r}$ or $T_{i j \ldots k}^{\prime}$ uniquely. Moreover, the expressions above agree iff

$$
T_{p q \ldots r}\left(R_{i p} a_{i}^{\prime}\right)\left(R_{j q} b_{j}^{\prime}\right) \ldots\left(R_{k r} c_{k}^{\prime}\right)=T_{i j \ldots k}^{\prime} a_{i}^{\prime} b_{j}^{\prime} \ldots c_{k}^{\prime}
$$

and this is true for any vectors (any $a_{i}^{\prime}, b_{j}^{\prime}, \ldots, c_{k}^{\prime}$) iff

$$
T_{i j \ldots k}^{\prime}=R_{i p} R_{j q} \ldots R_{k r} T_{p q \ldots r} \quad \text { Tensor Transformation Rule. }
$$

- The tensor product of n vectors $\mathbf{u}, \mathbf{v}, \ldots, \mathbf{w}$ is equivalent to a multilinear map defined by

$$
(\mathbf{u} \otimes \mathbf{v} \otimes \ldots \otimes \mathbf{w})(\mathbf{a}, \mathbf{b}, \ldots, \mathbf{c})=(\mathbf{u} \cdot \mathbf{a})(\mathbf{v} \cdot \mathbf{b}) \ldots(\mathbf{w} \cdot \mathbf{c})
$$

A tensor T of rank n is not, in general, a tensor product of n vectors, but it can always be written as a linear combination of tensor products of basis vectors, with coefficients precisely the tensor components in each basis:

$$
T=T_{p q \ldots r} \mathbf{e}_{p} \otimes \mathbf{e}_{q} \otimes \ldots \otimes \mathbf{e}_{r}=T_{i j \ldots k}^{\prime} \mathbf{e}_{i}^{\prime} \otimes \mathbf{e}_{j}^{\prime} \otimes \ldots \otimes \mathbf{e}_{k}^{\prime}
$$

This can be checked by applying these expressions, as multilinear maps, to any vectors $\mathbf{a}, \mathbf{b}, \ldots, \mathbf{c}$.

- Consider an array $T_{i \ldots j p \ldots q}$ with $n+m$ indices, defined for each choice of basis. Suppose that for any tensor $U_{p \ldots q}$ of rank m,

$$
V_{i \ldots j}=T_{i \ldots j p \ldots q} U_{p \ldots q}
$$

is a tensor of rank n. Then $T_{i \ldots j p \ldots q}$ is, in fact, a tensor. This is the Quotient Rule in its general form. The case $m=n=1$ (and T a matrix) was dealt with in lectures (section 13.1). To prove the general case, note that if $V_{i \ldots j}$ is a tensor then $V_{i \ldots j} a_{i} \ldots b_{j}$ is a scalar for any vectors $\mathbf{a}, \ldots, \mathbf{b}$. Choosing $U_{p \ldots q}=c_{p} \ldots d_{q}$ for any vectors $\mathbf{c}, \ldots, \mathbf{d}$, we deduce that

$$
T_{i \ldots j p \ldots q} a_{i} \ldots b_{j} c_{p} \ldots d_{q}
$$

is a scalar for any $\mathbf{a}, \ldots, \mathbf{b}, \mathbf{c}, \ldots, \mathbf{d}$. This implies (as above) the tensor transformation rule for T.

