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Mathematical Tripos Part IA Lent Term 2013

Vector Calculus Dr. J.M. Evans

Notes on Calculus and Coordinates

Single Variable Calculus R → R

• A function f : R → R is differentiable at x if

f(x + h) = f(x) + mh + o(h) as h → 0 ,

for some real number m. This number is the derivative of f at x:

m = f ′(x) = lim
h→0

1

h
{f(x + h) − f(x)} .

The definition says that f can be approximated in a neighbourhood of x by a line (the tangent to
the graph of f at x, with gradient m). This is a local linearisation of f .
[Recall little-o notation: a(h) = b(h) + o(h) as h → 0 iff ( a(h) − b(h) )/h → 0 as h → 0.]

• Setting y = f(x) and m = dy/dx, the statement that the function is differentiable becomes

δy =
dy

dx
δx + o(δx) as δx → 0 , or dy =

dy

dx
dx .

The use of differentials allows a convenient abbreviation of the first equation, in which the o-term
and limit are suppressed.

• A function f : R → R is smooth if it can be differentiated any number of times, so that
f ′(x), f ′′(x), . . . , all exist. The functions we deal with will be smooth except where things go
wrong in some obvious way, e.g. y = 1/x is smooth except at x = 0, where the function is not
defined. We restrict definitions and results to some appropriate subset of R whenever necessary.

• Taylor’s Theorem for a smooth function f states:

f(x + h) = f(x) + f ′(x)h +
1

2
f ′′(x)h2 + . . . +

1

k!
f (k)(x)hk + O(hk+1)

for any k, and for h in a suitable range [e.g. x and x+h in any closed interval contained within
an open interval on which f is smooth]. This does not imply that f has a convergent power series
expansion, in general; nevertheless, this will often be the case for the functions we meet.

• If f : R → R and g : R → R are smooth functions, then f ◦ g : R → R is also smooth, and its
derivative at a point u is given by the Chain Rule:

(f ◦ g)′(u) = f ′(g(u)) g′(u) .

Setting y = f(x) and x = g(u), the Chain Rule can also be expressed

dy

du
=

dy

dx

dx

du
or

d

du
=

dx

du

d

dx

where the differential operators act on any function which depends on u only through x.
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• The Riemann integral of a smooth function F over an interval a ≤ x ≤ b is the limit of a sum

∫ b

a

F (x) dx = lim
ℓ→0

∑
I

F (x∗

I) δxI ,

which can be defined as follows. Given any ℓ, partition the interval [a, b] into N segments, labelled
by I, so that each segment is of length δxI ≤ ℓ, and choose any points x∗

I in each segment. As ℓ → 0
(implying N → ∞) the partition into segments becomes finer and finer. The limit is independent
of all the choices made when F is smooth (or with much weaker assumptions, in fact).

• Fundamental Theorem of Calculus. If F = f ′ for some smooth function f then

∫ b

a

F (x)dx = f(b) − f(a) .

Understanding how this generalises to higher dimensions is one of our main objectives.

Many Variable Calculus Rn → R

• A function f : Rn → R is differentiable at xℓ (a point in Rn with these coordinates) iff

f(xℓ + hℓ) = f(xℓ) + mihi + o(h) as h = (hihi)
1/2 → 0 ,

for some real numbers mi. These are the partial derivatives of f at xℓ:

mi =
∂f

∂xi
,

with mi calculated by keeping xj fixed for j 6= i.

[A subtle point: The definition appears to depend on a notion of length, h, for the change in
coordinates hi. In fact we could make other choices, e.g. h =

∑
i |hi| or h = max(hi), and it would

make no difference to whether the function is differentiable.]

• A function f : Rn → R is smooth if successive partial derivatives exist to all orders:

∂f

∂xi
,

∂2f

∂xi∂xj
,

∂3f

∂xi∂xj∂xk
, . . . .

The order in which the derivatives are taken is then unimportant, so partial derivatives are totally
symmetric, e.g.

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

• Taylor’s Theorem for a smooth function of n variables states:

f(xℓ + hℓ) = f(xℓ) +
∂f

∂xi
hi +

1

2

∂2f

∂xi∂xj
hihj + . . . +

1

k!

∂kf

∂xi1 . . . ∂xik

hi1 . . . hik
+ O(hk+1)

with appropriate ranges for each hi.
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Mathematical Tripos Part IA Lent Term 2013

Vector Calculus Dr. J.M. Evans

Notes on Forces, Fields and Potentials

Newton’s Law and Coulomb’s Law

• Newton’s Second Law of Motion governs the behaviour of a particle of mass m, position r(t),
subject to a force F(r):

m r̈(t) = F(r) .

Given F(r), this equation can be solved (in principle) to find r(t) subject to suitable initial condi-
tions (e.g. specifying r(0) and ṙ(0)).

• The gravitational force between two particles depends on their masses (SI unit kg). Newton’s

Law of Gravitation states that the force on a particle of mass m at position r, due to a particle of
mass M at the origin, is:

F(r) = −G
Mm

r2
r̂ = −G

Mm

r3
r

where r̂ is a unit vector in the direction of r. Newton’s constant is G ≈ 6.67×10−11 N m2 kg−2.
Newton’s Law of Gravitation holds independently of the motion of the particles.

• The electromagnetic force between two particles depends on their electric charges (SI unit
Coulomb, C). The force also depends on how the charges move, in general, and not just on their
relative position. In the electrostatic case, however, when the charges are at rest, Coulomb’s Law

states that the force on a particle of charge q which is stationary at r, due to a particle of charge
Q stationary at the origin, is:

F(r) =
1

4πǫ0

Qq

r2
r̂ =

1

4πǫ0

Qq

r3
r

The factor of 4π is conventional, and the strength of the interaction is given by a constant called
the vacuum permittivity, ǫ0 ≈ 8.85×10−12 C2 N−1m−2.

• Both forces above obey an inverse square law and the formulas are identical, up to an overall
constant, if the roles of mass and charge are interchanged. A difference of sign means that all
masses attract under gravity, while like charges repel and unlike charges attract.

Fields and Sources

• The total gravitational or electrostatic force F(r) produced by some general distribution of masses
or charges is the sum of the forces due to each individual mass or charge in the distribution. The
result is then proportional to the mass m or charge q of any particle on which the force acts; so by
setting

F(r) = mg(r) or F(r) = qE(r)

we can define the gravitational field g(r) (the gravitational force per unit mass) and the electric

field E(r) (the electrostatic force per unit charge) which depend just on the distribution producing
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the force, independent of the particular mass or charge on which it is acting. The fields g or E are
said to be generated by the distribution, which is said to be a source for these fields.

• Newton’s Law and Coulomb’s Law now become the following results for gravitational or electric
fields due to a point mass M or point charge Q at the origin:

g(r) = −GM
1

r2
r̂ or E(r) =

Q

4πǫ0

1

r2
r̂ .

• A special aspect of gravity is that the same mass m appears both in Newton’s Law of Gravitation
and in Newton’s Law of Motion. The gravitational field g(r) is therefore just the acceleration due

to gravity . (This equality of inertial and gravitational mass is the first hint of a modified, purely
geometrical theory of gravity, General Relativity .)

• The electromagnetic force on a moving charge q depends on both the electric field E and the
magnetic field B produced by all other charges and currents. It is called the Lorentz Force:

F = q(E + ṙ×B ) .

Potentials and Poisson’s Equation

Topics in this section will be covered more fully in the lectures; this is summary.

• Gravitational and electrostatic forces are conservative, so

∇× F = 0 , F(r) = −∇V ,

where the scalar function V (r) is the potential energy. It follows that the fields g and E are also
conservative:

∇× g = 0 , ∇×E = 0 ,

g = −∇ϕ , E = −∇ϕ ,

where ϕ(r) is called the gravitational potential or the electrostatic potential. These scalar fields are
the potential energy per unit mass or per unit charge.

• Directly from Newton’s Law or Coulomb’s Law, the gravitational or electrostatic potential due
to a point mass M or point charge Q at the origin is:

ϕ(r) = −GM
1

r
or ϕ(r) =

Q

4πǫ0

1

r
.

• A general distribution of mass or charge can be defined by a scalar field ρ(r), the mass or charge

density . The fields g or E are determined from ρ by Gauss’s Law; in its differential form, this
states:

∇ · g = −4πGρ or ∇ · E = ρ/ǫ0

Expressing this in terms of potentials gives Poisson’s equation:

∇2ϕ = 4πGρ or ∇2ϕ = −ρ/ǫ0

Given a source ρ(r), solving Poisson’s equation for ϕ(r) enables us to find the corresponding grav-
itational or electrostatic field.

• In any region where the source ρ is zero, Poisson’s equation reduces to Laplace’s equation:

∇2ϕ = 0 .
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Mathematical Tripos Part IA Lent Term 2013

Vector Calculus Dr. J.M. Evans

Notes on the Geometry of Curves

• Consider a curve C parametrised by arc-length, with position vector r(s) and unit tangent vector

t(s) = r′(s) = dr/ds .

If t is constant then C is a straight line, r(s) = r(0) + st. In general, t′(s) will be non-zero and it
then specifies a direction perpendicular to C since, by differentiating,

t2 = 1 ⇒ t · t′ = 0 .

We use this to define a unit vector n(s), the principal normal, orthogonal to t(s), by setting

dt/ds = κn

where κ(s) is called the curvature. (The direction of n can be chosen to make κ > 0, but this is
not essential.) The binormal is a third unit vector b(s) defined by

b = t × n so { t, n, b } is a right−handed orthonormal basis.

• Now consider how the basis {t, n, b} varies with s along C. Note that, again by differentiating,

n2 = 1 ⇒ n · n′ = 0

b2 = 1 ⇒ b · b′ = 0

so that, at each point on C, n′ is a linear combination of t and b, while b′ is a linear combination
of t and n. But the coefficients in these linear combinations are also constrained by:

n · t = 0 ⇒ n · t′ = −t · n′ = κ

t · b = 0 ⇒ t · b′ = −b · t′ = 0

b · n = 0 ⇒ b · n′ = −n · b′ = τ

The results for the (related) inner-products in the first two lines follow immediately from the
definition of n in terms of t′, while the last line then serves to define a new quantity τ(s), called
the torsion. Thus, the variation of the basis vectors with s is specified by two scalar functions κ(s)
and τ(s), according to the following Frenet-Serret equations:

t′ = κn

n′ = −κt + τb

b′ = −τn

• The curvature κ(s) and torsion τ(s) encode the geometry of the curve C. Some understanding
of this is gained by considering a Taylor expansion of the curve around s = 0:

r(s) = r(0) + st + 1
2s2κn + 1

6s3(−κ2t + κ′n + κτb) + O(s4)

where the expressions for the coefficients follow just from the definitions given above and all are
understood to be evaluated at s = 0. To first order in s, the curve C is clearly approximated by its
tangent line at r(0). To second order it can be approximated by a circle through r(0) which has
radius 1/κ and which lies in a plane spanned by t and n. To third order C leaves this plane at a
rate which depends on τ .
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Mathematical Tripos Part IA Lent Term 2013

Vector Calculus Dr. J.M. Evans

Notes on Tensors, Multilinear Maps and the Quotient Rule

• Consider orthonormal bases and Cartesian coordinates related by

e′i = Rip ep , x′

i = Rip xp where Rip Rjp = Rqi Rqj = δij .

The components of any vector v with respect to these bases satisfy

v = vpep = v′ie
′

i where v′i = Rip vp , vp = Rip v′i .

• A tensor T of rank n is equivalent to a multilinear map from n vectors to a scalar:

T (a,b, . . . , c) = Tpq...r ap bq . . . cr = T ′

ij...k a′

i b′j . . . c′k .

Specifying this scalar for any choice of a,b, . . . , c determines the components Tpq...r or T ′

ij...k

uniquely. Moreover, the expressions above agree iff

Tpq...r (Rip a′

i) (Rjq b′j) . . . (Rkr c′k) = T ′

ij...k a′

i b′j . . . c′k

and this is true for any vectors (any a′

i, b′j , . . . , c′k) iff

T ′

ij...k = Rip Rjq . . . Rkr Tpq...r Tensor Transformation Rule.

• The tensor product of n vectors u,v, . . . ,w is equivalent to a multilinear map defined by

(u ⊗ v ⊗ . . . ⊗ w)(a,b, . . . , c) = (u · a)(v · b) . . . (w · c) .

A tensor T of rank n is not, in general, a tensor product of n vectors, but it can always be written
as a linear combination of tensor products of basis vectors, with coefficients precisely the tensor
components in each basis:

T = Tpq...r ep ⊗ eq ⊗ . . . ⊗ er = T ′

ij...k e′i ⊗ e′j ⊗ . . . ⊗ e′k .

This can be checked by applying these expressions, as multilinear maps, to any vectors a,b, . . . , c.

• Consider an array Ti...jp...q with n+m indices, defined for each choice of basis. Suppose that for
any tensor Up...q of rank m,

Vi...j = Ti...jp...q Up...q

is a tensor of rank n. Then Ti...jp...q is, in fact, a tensor. This is the Quotient Rule in its general
form. The case m = n = 1 (and T a matrix) was dealt with in lectures (section 13.1). To prove
the general case, note that if Vi...j is a tensor then Vi...j ai . . . bj is a scalar for any vectors a, . . . ,b.
Choosing Up...q = cp . . . dq for any vectors c, . . . ,d, we deduce that

Ti...jp...q ai . . . bj cp . . . dq

is a scalar for any a, . . . ,b, c, . . . ,d. This implies (as above) the tensor transformation rule for T .


