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Mathematical Tripos Part IB Gordon Ogilvie

ELECTROMAGNETISM Examples 1 Lent Term 2025

1. Suppose that the current density is J(x, t) = C x e−atx2

, where C and a are constants. Show
that the charge conservation equation can be satisfied by writing the charge density in the
form ρ = [f(x) + t g(x)] e−atx2

, where f and g are to be determined.

2. In a fluid environment, charge undergoes diffusion. This is described empirically by Fick’s

law J = −D∇ρ, where D is called the diffusion coefficient. Show that ρ obeys the heat
equation. Show that this is solved by a spreading Gaussian of the form

ρ(x, t) =
ρ0a

3

(4D(t− t0) + a2)3/2
exp

(

−
x2

4D(t− t0) + a2

)

,

where ρ0, a and t0 are constants.

3. Show that the motion of a particle of charge q and mass m in a uniform magnetic field (0, 0, B)
consists of motion with constant velocity in the z-direction combined with circular motion
with angular frequency qB/m in the xy-plane. Thus the trajectory of a charged particle in
a uniform magnetic field is a helix. How is the geometry of the helix related to the initial
velocity of the particle?

4. Roughly sketch the electric field lines (including arrows to show direction) and equipotentials
(surfaces of constant Φ) for the following systems of point charges: (i) A single charge +q; (ii)
two charges +q separated by a distance 2a; (iii) two charges ±q separated by a distance 2a.

5. A charge density is given by ρ = ρ0 e
−k|z|, where ρ0 and k are positive constants. This is

invariant under translations in the xy-plane, rotations about the z-axis and reflections in the
xy-plane, so we assume the electric field has the same symmetries. Show that this implies
E = (0, 0, E(z)) with E(z) = −E(−z). Use Gauss’s law to show that, for z > 0,

E(z) =
ρ0
ǫ0k

(

1− e−kz
)

.

6. (a) Use Gauss’s law to obtain the electric field due to a uniform charge density ρ occupying
the region a < r < b, where r is the radial distance from the origin. (b) Show that in the
limit b → a, ρ → ∞ with (b − a)ρ fixed, the electric field suffers the expected discontinuity
due to surface charge.

7. A circular disc of radius a has uniform surface charge density σ. Compute the potential at
a point on the axis of symmetry at distance z from the centre. Compute the electric field
at this point. Find the discontinuity in the normal electric field at the centre of the disc.
Show that, far along the axis of symmetry, the electric field looks approximately like that of
a charged point particle.

8. A capacitor consists of two conductors occupying the regions a < r < b and c < r < d in
spherical polar coordinates, where b < c. Calculate its capacitance.
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9. (a) A uniqueness theorem for Poisson’s equation. Let V be a connected region with boundary
S. Consider two solutions Φ1 and Φ2 for Poisson’s equation (with the same RHS) in V . Define
Ψ = Φ1 − Φ2. Show that

∫

V
|∇Ψ|2 dV =

∫

S
Ψ∇Ψ · dS .

Now assume that Φ1 and Φ2 are constant on S. Use Gauss’s law to deduce that Ψ is constant
throughout V (so the two solutions give the same electric field).

(b) Consider a conductor with a cavity V inside it. Assume that the charge density vanishes
in V . Use the result of (a) to prove that E = 0 in V . Thus the conductor screens the cavity
from the effects of any electric field outside the conductor.

(c) Consider a conductor occupying a finite region V ′, possibly containing cavities. Let S′ be
a surface lying infinitesimally outside V ′. Show that the electric field outside S′ depends only
on the total charge enclosed by S′, i.e. any surface charge on the conductor plus charge inside
any cavities. [Hint: apply the method of (a) to the infinite region outside the conductor.]

(d) Consider a generalization of question 8 where we now allow the two conductors to have
arbitrary shape, but still with spherical topology. Explain why (b) and (c) imply that E

vanishes inside the inner conductor and outside the outer conductor. What does this imply
about the surface charges?

10. (⋆) A spherical conducting shell has radius R. The shell is grounded (i.e. has zero potential).
A charge q is placed inside the shell at a point x0 = (0, 0, d) from the centre, with d < R.
Show that the potential inside the shell can be determined by placing an appropriate image
charge outside the shell at x′

0
= (0, 0, R2/d). Show that the induced surface charge on the

shell is

σ = −
q

4π

R2 − d2

R(R2 − 2dR cos θ + d2)3/2
,

where θ is the angle between the point on the shell and the z-axis.

11. (a) Show that, far from a charge distribution ρ(x) localized in a region V , the potential takes
the form

Φ(x) =
1

4πǫ0

(

Q

r
+

p · x

r3
+

1

2

Qijxixj
r5

+ . . .

)

,

where Q is the total charge, p is the dipole moment, Qij is the quadrupole moment tensor
and r = |x|.

(b) Compute Q, p and Qij for: (i) two charges, +q and −q, at points (0, 0, 0) and (d, 0, 0)
respectively; (ii) two charges +q and two charges −q placed on the corners of a square, with
sides of length d, such that every charge has an opposite charge to each of its neighbours; (iii)
four charges +q and four charges −q placed on the corners of a cube, with sides of length d,
such that every charge has an opposite charge to each of its neighbours.

12. Show that the force and torque on a point electric dipole at position x in an electrostatic field
are F = p · ∇E and τ = p× E + x× F. Deduce that the potential energy of the dipole is
−p ·E. Hence show that the electrostatic energy of a pair of dipoles is

U =
1

4πǫ0

[

p1 · p2

|x1 − x2|3
−

3p1 · (x1 − x2)p2 · (x1 − x2)

|x1 − x2|5

]

.
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