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B38
Mathematical Tripos Part IB Prof A.C. Davis
INTRODUCTION TO SPECIAL RELATIVITY (P6) Lent Term 2009

Problems: 1–4 are 2-dimensional, 5–10 are 4-dimensional.

1. In a 2-dimensional spacetime an inertial frame S ′ moves with velocity u relative to an inertial
frame S. Write down an appropriate Lorentz transformation between S and S ′. A particle p moves
with speed v with respect to S and v′ with respect to S ′, so that if its position is measured at two
successive instants dx = vdt and dx′ = v′dt′. Suppose the two clocks agree for p, i.e., dt′ = dt.
Show that p is moving with constant velocity and

v =
c2

u

[

1 −
√

1 − u2/c2

]

.

2. Two clocks are at rest in inertial frames S and S ′ whose relative velocity is u in a 2-dimensional
spacetime, and the clocks indicate t = t′ = 0 when the two spatial origins coincide. When the clock
in S ′ reads ∆t′ it receives a radio signal from the clock in S sent out at time ∆t. Draw a spacetime
diagram describing this process. Hence, or otherwise, deduce the Doppler shift equation,

∆t = ∆t′

√

1 − u/c

1 + u/c
.

3. (a) Rewrite the wave equation for a scalar field,

1

c2

∂2ϕ

∂t2
=

∂2ϕ

∂x2
,

in terms of the coordinates
x± = x ± ct.

(b) Show that under a Lorentz transformation the coordinates transform as follows,

x± → x′

± =

√

c ∓ v

c ± v
x±

where v is the velocity associated with the transformation. Hence show that if φ(x+, x−) is a
solution of the wave equation then φ(x′

+, x′
−) is also.

*(c) Using the fact that the general solution of the wave equation is

φ = f(x+) + g(x−),

where f and g are arbitrary twice differentiable functions, derive the Doppler shift formula of
question 2.

4. Use a spacetime diagram to demonstrate the phenomenon of length contraction.

In Porterhouse, college maintenance staff are expected to work fast. A man runs at a speed u
corresponding to γ = 2, carrying a 20m long ladder, into a shed of length 10m, where an assistant

is then able to close the door! However from the runner’s point of view, he encounters a high speed

shed of length 5m, which is able to enclose his 20m long ladder. Explain!
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This is a typical special relativity “paradox”. As stated it involves sharp deaccelerations when
the runner meets with the end wall. Therefore replace the shed with a “Dutch barn”, (i.e., fixed
dimensions but open walls). Compute the velocity parameter β = u/c =

√
3/2 ≈ 0.9, and deduce

1/β ≈ 1.1. Let the barn’s inertial frame be S, and the runner’s be S ′. Assume that the front of
the ladder f and the first barn wall s coincide at t = t′ = 0. Draw spacetime diagrams for both
S and S ′, showing clearly the spacetime paths of f and s, as well as the paths of b, the back of
the ladder, and e, the other barn wall, and estimate the intercepts of these straight lines with the
coordinate axes. Now explain the paradox.

5. In an inertial frame S a photon with energy E moves in the xy-plane at an angle θ relative
to the x-axis. Show that in a second frame S ′ whose relative speed is u directed in the x-direction,
the energy and angle are given by

E′ = γE(1 − β cos θ), cos θ′ =
cos θ − β

1 − β cos θ
,

where β = u/c and γ = (1 − β2)−1/2. Write down E and cos θ as functions of E′ and cos θ′.

Show that for a photon moving in the x-direction there is a frequency change by a factor
√

(1 − β)/(1 + β) — this is the special relativistic Doppler effect.

Next consider a source of photons which is at rest in S ′. Consider the photons emitted in the
forward direction, i.e., cos θ′ > 0. Show that if β is close to unity, these photons will appear in S
to be concentrated in a narrow cone about θ = 0 — this is the headlight effect.

6. Pulsars are stars which emit pulses of radiation at a regular frequency. Jack and Jill are twins
who count pulses from a very distant pulsar (thousands of light years away) in the y-direction. She
travels at a speed given by β = 24/25 in the x-direction for seven years and then comes back at the
same speed, while he stays at home. At the end of the trip they have counted the same number of
pulses. Use question 5 to confirm that on return she has aged by 14 years and he by 50.

7. A body of rest mass m0 disintegrates at rest into two parts of rest masses m1 and m2. Show
that the energies of the parts are

E1 = c2 m2
0 + m2

1 − m2
2

2m0

, E2 = c2 m2
0 + m2

2 − m2
1

2m0

.

8. Two particles with rest masses m1 and m2 scatter elastically. Show that in the centre-of-
momentum frame, p1 and p2 the 3-momenta before collision and q1 and q2, the 3-momenta after
collision all lie on a circle, i.e., they are coplanar and all have the same magnitude.

9. A photon (of zero rest mass) collides with an electron of rest mass m0 which is initially at
rest. Show that the angle θ by which the photon is deflected is related to the magnitudes p and q
of its initial and final momenta by

2 sin2 1

2
θ =

m0c

q
− m0c

p
.

10. In a laboratory frame a particle of rest mass m1 has energy E1, and a second particle of rest
mass m2 is at rest. Show that in units where c = 1, the combined energy in the centre-of-momentum
frame is

√

m2
1 + m2

2 + 2E1m2.

Hence show that in a collision of one proton with energy E on another one at rest it is possible to
create a proton-antiproton pair (in addition to the original protons) if E ≥ 7m (where m1 = m2 = m
is the mass of a proton and of an antiproton).

Comments and corrections to acd@damtp.cam.ac.uk
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