
C
op

yr
ig

ht
 ©

 2
02

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Mathematical Tripos Part IB Eric Lauga
FLUID DYNAMICS Lent 2025

Example Sheet 2

1. By considering the forces acting on a small rectangular slab of incompressible,
viscous fluid undergoing an unsteady parallel shear flow u = (u(y, t), 0, 0), including a
body force F = (fx, fy, 0), show that

ρ
∂u

∂t
= µ

∂2u

∂y2
− ∂p

∂x
+ fx,

0 = −∂p
∂y

+ fy.

2. A film of viscous fluid of uniform thickness h flows steadily under the influence
of gravity down a rigid vertical wall. Assume that the surrounding air exerts only a
constant pressure on the fluid. Calculate the velocity profile and find the volume flux
(per unit width) of fluid down the wall.

3. A long, horizontal, two-dimensional container of uniform depth h, filled with vis-
cous fluid, has stationary, rigid bottom and end walls, and a rigid top that moves with
constant velocity (U, 0) in Cartesian coordinates (x, y). Assume that the flow far from
the end walls is parallel and steady with components (u(y), 0). Determine u(y) and
hence determine the tangential stress exerted by the fluid on each of the top and bot-
tom boundaries. Describe the overall force balance on a section x0 < x < x1 of the
flow.

[Hint: No penetration through the end walls requires the volume flux across any vertical

cross-section of the flow to be zero, which determines the horizontal pressure gradient.]

4. A two-dimensional, semi-infinite layer of viscous fluid lies above a rigid boundary
at y = 0 that oscillates in its own plane with velocity (U0 cosωt, 0). There is no applied
pressure gradient and the fluid flows parallel to the boundary with velocity (u(y, t), 0).

By writing u(y, t) = Re [U0f(y)e
iωt],† show that

f(y) = exp

[

−(1 + i)

√

ω

2ν
y

]

and hence that the velocity decays away from the boundary over a characteristic length-
scale

√

ν/ω. Sketch the velocity profile at t = 0 and ωt = π/2.
Calculate the shear stress on the boundary and hence calculate the mean rate of

doing work (per unit area) by the boundary.
†Real part, not Reynolds number!

5. An infinite layer of viscous fluid of depth h is initially stationary and has a station-
ary rigid upper boundary, while its rigid lower boundary is set into parallel motion with
constant speed U at time t = 0. Write down the equation, the initial condition and the
boundary conditions satisfied by the subsequent flow (u(y, t), 0). What is the steady
flow u∞(y) that is established after a long time? By writing u(y, t) = u∞(y) − û(y, t)
and using separation of variables, determine a series solution for the transient flow û.
Show that the shear stress exerted by the fluid on the boundary at y = 0 is divergent
as t→ 0+ but that it is subsequently finite and tends to −µU/h as t→ ∞.
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6. Water from a large deep reservoir flows steadily over a long straight weir with a
wide crest. Over the weir, the water is of depth d(x) and the free surface has fallen to
a level h(x) below that far upstream in the reservoir. Assume that the depth of water
varies sufficiently slowly that the velocity is nearly horizontal and uniform in depth,
and that dh/dx is non-zero at the crest of the weir. Show that the volume flux (per
unit length normal to the flow) is Q = d

√
2gh. From the condition that Q does not

vary along the flow, and the condition that h+ d is a minimum at the crest of the weir
[differentiate], show that h = 1

2d at the crest. Deduce that Q2 = 8gL3/27 where L is
the minimum value of h+ d.

7. Calculate the vorticity of the velocity field

u = −αx− yrf(t), v = −αy + xrf(t), w = 2αz

where r2 = x2 + y2. Use the (inviscid) vorticity equation to deduce that f(t) ∝ e3αt.
Explain the nature of this flow and describe the physical principle illustrated by your
result. (Why is the growth rate 3α?)

8. If u = Ω ∧ x (uniform rotation with angular velocity Ω) show that ω = 2Ω.
For a two-dimensional flow

(

u(x, y), v(x, y), 0
)

show that ω = (0, 0,−∇2ψ), where
ψ is the streamfunction.

A long cylinder filled with water has elliptical cross-section with major and minor
semi-axes a and b. While t < 0 both the cylinder and the water within it rotate about
the axis of the cylinder with uniform angular velocity (0, 0,Ω). What is the vorticity
of the flow? Sketch the streamlines noting that they intersect the elliptical boundary
of the cylinder. (Why?).

At t = 0 the cylinder is suddenly brought to rest. What is the vorticity for t > 0?
Verify that the flow can be described by

ψ =
a2b2Ω

a2 + b2

(

1− x2

a2
− y2

b2

)

in suitable coordinates and sketch the streamlines.

9. A sphere of radius a moves with constant velocity U through inviscid fluid other-
wise at rest. How far ahead of the sphere is there a disturbance of magnitude 1

20U?
Show that the acceleration of a fluid particle at distance x ahead of the centre of the
sphere is

3U2

(

a3

x4
− a6

x7

)

.

10. Write down the velocity potential φ(x, y) for the two-dimensional flow produced
by a point source of strength q located at the origin in a uniform stream (U, 0). Show
that there is a stagnation point at (−a, 0), where a = q/2πU . Sketch the streamlines.
Show that the streamfunction is given by ψ = Uy+Uaθ, where θ is the polar angle from
the positive x axis. From the sketch and the streamfunction show that φ represents
the flow past a semi-infinite body whose width tends to 2πa far downstream.

Please email corrections/comments to e.lauga@damtp.cam.ac.uk
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