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Mathematical Tripos Part IB Eric Lauga
FLUID DYNAMICS Lent 2025

Example Sheet 3

1. The velocity in the far-field of steady uniform flow past a stationary two-dimensional
aerofoil with circulation κ takes the form

u = (U, 0) +
κ

2πr
(− sin θ, cos θ) +O(1/r2) ,

where the O(1/r2) dipole term depends on the detailed shape of the object. Determine
the pressure p(r, θ) in the far-field to the same level of approximation. Use the momentum
integral equation to show that the aerofoil experiences a force (0,−ρUκ).

2. An orifice in the side of an open vessel containing water leads smoothly into a horizontal
tube of uniform cross-section and length L. The diameter of the tube is small compared
with L, with the horizontal dimensions of the free surface, and with the depth h of the
orifice below the free surface. A plug at the end of the tube is suddenly removed and the
water begins to flow. Show, using the expression for the pressure in unsteady irrotational
flow, that the outflow velocity at subsequent times t is approximately

√

2gh tanh

(

t
√
2gh

2L

)

.

Estimate the time scale for the flow in a garden hose to accelerate to its maximum velocity
(Assume that tap pressure is equivalent to ρgh with h = 5m.)

3. A rigid circular disc of radius R is at a height h(t) above a fixed horizontal plane z = 0,
and inviscid incompressible fluid fills the gap 0 < z < h(t), r < R between them. Assume
that h ≪ R and that the axisymmetric flow in the thin gap has radial component ur(r, t)
independent of z. Use conservation of mass and the boundary conditions to deduce that
the velocity in the gap is given by

u = ∇φ with φ =
ḣ

4h

(

2z2 − r2
)

.

Assuming that the pressure at the edge of the disc is a constant p0 (as velocities and
pressures are much larger in the thin gap than elsewhere), find the pressure distribution in
the gap and hence determine the force on the plane due to the motion.

4. A rigid sphere of radius a executes small-amplitude oscillations with velocity U(t)ez
about the centre r = 0 of a larger fixed sphere of radius b. By linearising the boundary
condition on the smaller sphere onto r = a, find the velocity potential for the induced
irrotational motion of fluid that fills the gap between the two spheres and, again neglecting
terms quadratic in the amplitude, show that the (dynamic) pressure on the surface of the
inner sphere is

a3 + 1
2b

3

b3 − a3
ρU̇a cos θ ,

where θ is the angle from ez. Hence find the force exerted by the fluid on the inner sphere.
Why is the force on the outer fixed sphere different? Comment on the case of a tight fit.

5. A U-tube consists of two long uniform vertical tubes of different cross-sectional areas
A1, A2 connected at the base by a short tube of large cross-section, and contains an inviscid,
incompressible fluid whose surface, in equilibrium, is at height h above the base. Derive
the equation governing the nonlinear oscillations of the displacement ζ(t) of the surface in
the tube of cross-section A2

(h+ rζ)
d2ζ

dt2
+

r

2

(

dζ

dt

)2

+ gζ = 0 where r = 1−A2/A1.
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6. Water fills a square container 0 6 x 6 a, 0 6 y 6 a to an equilibrium depth h. Write
down the equation and (exact) boundary conditions for the velocity potential and the mo-
tion of the free surface when it is disturbed from equilibrium. Explain how to linearise the
free-surface conditions for small-amplitude disturbances. Seek separable solutions propor-
tional to exp(−iωt) to the linearised equations, and thence obtain the frequencies of the
‘normal modes’. Show the sign of the surface displacement in plan view for the five lowest
frequency modes.

7. Fluid of density ρ1 occupies the region z > 0 and overlies another fluid of density ρ2
(with ρ2 > ρ1), which occupies the region z < 0. Show that small-amplitude oscillations
with interfacial displacement ζ(x, t) ∝ exp[i(kx−ωt)], k > 0, satisfy the dispersion relation

ω2 = gk

(

ρ2 − ρ1
ρ2 + ρ1

)

.

[Hint: You will need different potentials φ1 and φ2 for the two regions and should apply the

kinematic boundary condition to the flow in each region.]

8. Wind blows steadily with uniform speed U from west to east over the United Kingdom.
What is the magnitude and direction of the horizontal pressure gradient? Estimate (to 1
s.f.) the pressure difference between London and Edinburgh when U = 10 m s−1.

[You may need to look up values for the physical parameters.]

9. Derive the linearized, rotating, shallow-water equations governing the horizontal flow
(u, v) in a layer of inviscid fluid of depth h0 + η(x, y, t), where η ≪ h0, f is the Coriolis
parameter and g is the acceleration due to gravity,

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = −g

∂η

∂y
,

∂η

∂t
+ h0

(

∂u

∂x
+

∂v

∂y

)

= 0.

Consider flow parallel to a coastline x = 0 with u ≡ 0 and show that

∂2η

∂t2
− gh0

∂2η

∂y2
= 0 and

∂2η

∂t∂x
+ f

∂η

∂y
= 0.

Find wave-like solutions of the form η = A(x)B(y − ct) for arbitrary functions B, and
determine the constant wave speed c. Given f > 0 and η → 0 as x → ∞, determine the
x-structure function A and explain why waves can only travel in the negative y direction.

[These solutions represent coastally trapped Kelvin waves. They travel southwards along the

east coast of England and northwards along the west coast of the Netherlands. One large

such wave was responsible for the devastating floods in East Anglia and the Netherlands in

1953.]

Please email corrections/comments to e.lauga@damtp.cam.ac.uk
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