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P2f/B24

Mathematical Tripos Part 1B N. G. Berloff
FLUID DYNAMICS (P2)

Example Sheet 3

1. Two line vortices are initially at (0,d) and (0, —d) in Cartesian coordinates. De-
scribe the motion of the vortices if their strengths are: (a) +x and —«; (b) 4 and +k;
and (c) +2k and —«.

A two-dimensional fluid flow contains a line source of strength m fixed at the origin
and two freely moving line vortices of strength +x. The motion of each vortex is due
to the combined velocity field of the source and the other vortex. Suppose that the two
vortices are symmetrically placed at (r(t), £6(t)) in polar coordinates. Find 7 and 6 and
hence show that

rsinf = Ae=2m0/x

where A is a constant. Sketch the vortex paths.

2. Write down the equation and linearized boundary conditions for the velocity poten-
tial and the motion of the free surface, for small amplitude oscillations of the water surface
in a square container 0 < x < a, 0 <y < a of depth h, i.e. water in —h < z < ((z,y,t)
with ( < 1. Find the frequencies of the oscillations. Show the sign of the surface
displacement in plan view for the five lowest frequency modes.

3. Fluid of density p; occupies the region z > 0 and overlies another fluid of density
p2 (with pa > p;), which occupies the region z < 0. Show that the frequencies of small
amplitude oscillations of the interface between the regions are given by

w2 = gk (Pz —P1) '
p2 + p1
[Hint: You will need different potentials ¢; and ¢o for the two regions, and you should
apply the kinematic boundary condition to the flow in each region.]

4. Find the frequencies of small-amplitude oscillations for the water surface in a vertical
cylinder of radius a and of large depth. [You may assume that the velocity potential is
given by separable solutions to Laplace’s equation of the form ¢(r, z,t) = Jy(kr)e?* =% for
axisymmetric oscillations and ¢(r, 0, z,t) = J,(kr) cos(nf)e**~*! for non-axisymmetric
oscillations, where the functions Jy, J; etc. are called Bessel functions; see over for
graphs of Jy, J; and J;.] What restriction does the kinematic boundary condition at
r = a place on the value of k7

*What is the lowest frequency for a cup of tea? Show the sign of the surface displace-
ment in plan view for the three lowest frequency modes. [The first root of Jj(z) = 0 is
z = 3.83 while the first root of J{(z) = 0is z = 1.84.]*
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5. Water from a large deep reservoir flows over a weir. The water is of depth d where
the free surface has fallen to a level 7 below that far upstream in the reservoir. Assume
that the depth of the water varies sufficiently slowly so that the velocity can be taken to
be horizontal and uniform in depth. Show that the volume flux (per unit length normal
to the flow) is @ = dv/2gn. From the condition that @ does not vary along the flow, and
the condition that d + 7 is a minimum at the crest of the weir [differentiate|, show that
n= %d at the crest. Deduce that Q* = 8gh3/27 where h is the minimum value of d + 7.

6. An idealized river flows in a channel of rectangular cross-section, with a flat, hori-
zontal bottom, and with width w(z) varying slowly along the channel. Far upstream, the
fluid velocity u has the constant value U, the depth of the water has the constant value
H, and the width of the channel has the constant value W. Taking u(z) to be constant
over each cross-section of the channel, show [from mass conservation and Bernoulli] that

W _u U?

— = 1412 1p? — .
w U(+2 2 gH

u2

U2) . where F? =

Sketch this relationship. Observation of the river shows that u(x) is steady and slowly
varying and that far downstream w — W but w — V' # U. What can be deduced about
W/w in the region of varying width? Find V' and the depth far downstream.

7. Rework the analysis of a hydraulic jump in your lecture notes using the reference
frame in which the jump is stationary. In that reference frame, write down the flux
of energy (kinetic plus potential) and the rate of working of pressure forces at control
surfaces on either side on the jump. The difference between the fluxes at the two sides is
the rate of energy dissipation D due to friction (viscosity) in the jump. By eliminating
the speed of the jump relative to the fluid behind it, (V — Us), show that

(hy — hy)?
ho ’

where hy; and hq are, respectively, the fluid depths ahead of and behind the jump and
V' 4+ Uj is the speed of the jump relative to the fluid ahead of it.

D = %(V—i-Ul)

Bessel functions for Q4, Jo(x) (solid curve), Ji(z) (dashed), Jo(z) (dash-dotted).

Please email corrections/comments to N.G.Berloff@damtp.cam.ac.uk



