Numerical Analysis: Example Sheet 2

1. Let \(h = 1/M \), where \(M \geq 1 \) is an integer. Consider the differential equations

\[
y'(t) = -\frac{y}{1 + t} \quad \text{and} \quad y'(t) = \frac{2y}{1 + t}, \quad 0 \leq t \leq 1,
\]

with initial condition \(y(0) = 1 \) in both cases. In each case find the exact solution of the differential equation.

Define Euler’s method, and apply it to calculate the estimates \(\{y_n\}_{n=1}^{M} \) of \(y(nh) \) for each of the equations letting \(y_0 = y(0) = 1 \). By using induction and by cancelling as many terms as possible in the resultant products, deduce simple explicit expressions for \(y_n, n = 1, 2, \ldots, M \), which should be free from summations and products of \(n \) terms. Deduce the exact solutions of the equations from the limit \(h \to 0 \). Verify that the magnitude of the errors \(y_n - y(nh), n = 1, 2, \ldots, M \), is at most \(O(h) \).

2. Assuming that \(f \) satisfies the Lipschitz condition and the true solution possesses a bounded third derivative in \([0, t^*]\), apply the method of analysis of the Euler method, given in the lectures, to prove that the trapezoidal rule

\[
y_{n+1} = y_n + \frac{1}{2}h[f(t_n, y_n) + f(t_{n+1}, y_{n+1})]
\]

converges and that \(\|y_n - y(t_n)\| \leq ch^2 \) for some \(c > 0 \) and all \(n \) such that \(0 \leq nh \leq t^* \).

3. The \(s \)-step Adams–Bashforth method is of order \(s \) and has the form

\[
y_{n+s} = y_{n+s-1} + \frac{s-1}{2} \sum_{j=0}^{s-1} \sigma_j f(t_{n+j}, y_{n+j}).
\]

Calculate the actual values of the coefficients in the case \(s = 3 \).

4. By solving a three-term recurrence relation, calculate analytically the sequence of values \(\{y_n : n = 2, 3, 4, \ldots\} \) that is generated by the explicit midpoint rule

\[
y_{n+2} = y_n + 2hf(t_{n+1}, y_{n+1}),
\]

when it is applied to the ODE \(y' = -y, t \geq 0 \). Starting from the values \(y_0 = 1 \) and \(y_1 = 1 - h \), show that the sequence diverges as \(n \to \infty \) for all \(h > 0 \).

However if the order of the method is greater or equal to one, the root condition and suitable starting conditions imply convergence in a finite interval. Prove that the above implementation of the explicit midpoint rule is consistent with this theorem.

Hint: in the last part, relate the roots of the recurrence relation to \(\pm e^{\mp n} + O(h^3) \).

5. Show that the multistep method

\[
\sum_{j=0}^{3} \rho_j y_{n+j} = h \sum_{j=0}^{2} \sigma_j f(t_{n+j}, y_{n+j}), \quad \text{where} \quad \rho_0 = 1 \quad \text{(as in lectures),}
\]

is fourth order only if the conditions \(\rho_0 + \rho_2 = 8 \) and \(\rho_1 = -9 \) are satisfied. Hence deduce that this method cannot be both fourth order and satisfy the root condition.

6. An \(s \)-stage explicit Runge–Kutta method of order \(s \) with constant step size \(h > 0 \) is applied to the differential equation \(y' = \lambda y, t \geq 0 \). Prove the identity

\[
y_n = \left[\sum_{\ell=0}^{s} \frac{1}{\ell!} (\lambda h)^\ell \right]^n y_0, \quad n = 0, 1, 2, \ldots
\]

by showing by induction that \(k_i = \lambda y_p p_{i-1}(\lambda h) \) where the \(p_{i-1} \) are polynomials of degree \(i - 1 \), deducing that \(y_{n+1} = p_s(\lambda h)y_n \), and using the order condition to determine \(p_s \); or otherwise.
7. The following four-stage Runge–Kutta method has order four,
\[k_1 = f(t_n, y_n) \]
\[k_2 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1) \]
\[k_3 = f(t_n + \frac{1}{2}h, y_n - \frac{1}{2}hk_1 + hk_2) \]
\[k_4 = f(t_n + h, y_n + hk_1 - hk_2 + 2hk_3) \]
\[y_{n+1} = y_n + h(\frac{1}{6}k_1 + \frac{2}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4). \]

By considering the equation \(y' = y \), show that the order is at most four. Then, for scalar functions, prove that the order is at least four in the easy case when \(f \) is independent of \(y \), and that the order is at least three in the relatively easy case when \(f \) is independent of \(t \).

Comment: do not derive all of the (gory) details when \(f(t, y) \) depends on both \(t \) and \(y \).

8. Find \(\mathcal{D} \cap \mathbb{R} \), the intersection of the linear stability domain \(\mathcal{D} \) with the real axis, for the following methods:

- (1) \(y_{n+1} = y_n + h f(t_n, y_n) \)
- (2) \(y_{n+1} = y_n + \frac{1}{2}h[f(t_n, y_n) + f(t_{n+1}, y_{n+1})] \)
- (3) \(y_{n+2} = y_n + 2hf(t_{n+1}, y_{n+1}) \)
- (4) \(y_{n+2} = y_{n+1} + \frac{1}{2}h[3f(t_{n+1}, y_{n+1}) - f(t_n, y_n)] \)
- (5) The RK method \(k_1 = f(t_n, y_n), k_2 = f(t_n + h, y_n + hk_1), y_{n+1} = y_n + \frac{1}{2}h(k_1 + k_2). \)

Hint: note that to solve \(a < X < b \), instead of manipulating the inequalities it can be easier to solve \(X = a \) and \(X = b \), and then decide which region is required by considering one interior point (as for conformal maps).

9. Show that, if \(z \) is a nonzero complex number that is on the boundary of the linear stability domain of the two-step BDF method
\[y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2}) \]
then the real part of \(z \) is positive. Thus deduce that this method is A-stable.

Hint: if \(z \) is on the boundary of the linear stability domain then \(y_n = \exp(i\theta) \) for some real \(\theta \).

10. The (stiff) differential equation
\[y'(t) = -10^4(y - t^{-1}) - t^{-2}, \quad t \geq 1, \quad y(1) = 1, \]
has the analytic solution \(y(t) = t^{-1}, \ t \geq 1 \). Let it be solved numerically by Euler’s method \(y_{n+1} = y_n + h f(t_n, y_n) \) and the backward Euler method \(y_{n+1} = y_n + h f(t_{n+1}, y_{n+1}) \), where \(h_n = t_{n+1} - t_n \) is allowed to depend on \(n \) and to be different in the two cases. Suppose that, for any \(t_n \geq 1 \), we have \(|y_n - y(t_n)| \leq 10^{-6} \), and that we require \(|y_{n+1} - y(t_{n+1})| \leq 10^{-6} \). Show that Euler’s method can fail if \(h_n = 2 \times 10^{-4} \), but that the backward Euler method always succeeds if \(h_n \leq 10^{-2}t_n^2/101 \).

Hint: find relations between \(y_{n+1} - y(t_{n+1}) \) and \(y_n - y(t_n) \) for general \(y_n \) and \(t_n \).

11. This question concerns the predictor-corrector pair
\[y_{n+3}^P = -\frac{1}{2}y_n + 3y_{n+1} - \frac{3}{2}y_{n+2} + 3hf(t_{n+2}, y_{n+2}), \]
\[y_{n+3}^C = \frac{1}{11}[2y_n - 9y_{n+1} + 18y_{n+2} + 6hf(t_{n+3}, y_{n+3})]. \]

Show that both methods are third order, and that the estimate of the error of the corrector formula by Milne’s device has the value \(\frac{1}{27}y_{n+3}^C - y_{n+3}^C \).

12. Let \(u(x), 0 \leq x \leq 1, \) be a six-times differentiable function that satisfies the ODE \(u''(x) = f(x) \), \(0 \leq x \leq 1, u(0) \) and \(u(1) \) being given. Further, we let \(x_m = mh = m/M, m = 0, 1, \ldots, M \), for some positive integer \(M \), and calculate the estimates \(u_m \approx u(x_m), m = 1, 2, \ldots, M - 1 \), by solving the difference equation
\[u_{m+1} - 2u_m + u_{m-1} = h^2 f(x_m) + \alpha h^2[f(x_{m-1}) - 2f(x_m) + f(x_{m+1})], \quad m = 1, 2, \ldots, M - 1, \]
where \(u_0 = u(0), u_M = u(1) \), and \(\alpha \) is a positive parameter. Show that there exists a choice of \(\alpha \) such that the local truncation error of the difference equation is \(O(h^6) \).