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Numerical Analysis – Examples’ Sheet 2
1. Given h > 0, let Euler’s method be applied to calculate the estimates {yn} of y(nh) for each

of the differential equations

y′ = − y

1 + t
and y′ =

2y

1 + t
, 0 ≤ t ≤ 1,

starting with y0 = y(0) = 1 in both cases. By using induction and by cancelling as many terms
as possible in the resultant products, deduce simple explicit expressions for yn, which should be
free from summations and products of n terms. Hence deduce the exact solutions of the equations
from the limit h→ 0 and nh→ t. Verify that, for nh ∈ [0, 1], the magnitude of the errors yn−y(nh)
is at most O(h).

2. Assuming that f satisfies the Lipschitz condition and possesses a bounded third derivative
in [0, T ], apply the method of analysis of the Euler method, given in the lectures, to prove that the
trapezoidal rule

yn+1 = yn + 1
2
h[f(tn,yn) + f(tn+1,yn+1)]

converges and that ‖yn − y(tn)‖ ≤ ch2 for some c > 0 and all n such that 0 ≤ nh ≤ T .
3. The s-step Adams–Bashforth method is of order s and has the form

yn+s = yn+s−1 + h

s−1∑
m=0

bmf(tn+m,yn+m).

Calculate the actual values of the coefficients in the case s = 3.
4. By solving a three-term recurrence relation, calculate analytically the sequence of values

{yn}n≥2 that is generated by the explicit midpoint rule

yn+2 = yn + 2hf(tn+1,yn+1),

when it is applied to the ODE y′ = −y, t ≥ 0. Starting from the values y0 = 1 and y1 = 1 − h,
show that the sequence diverges as n → ∞ for any h > 0. Recall, however, that order ≥ 1, the
root condition and suitable starting conditions imply convergence in a finite interval. Prove that
the above implementation of the explicit midpoint rule is consistent with this theorem.

[Hint. In the last part, relate the roots of the recurrence relation to ±e∓h +O(h3).]
5. Show that the multistep method (with a3 = 1)

3∑
m=0

amyn+m = h

2∑
m=0

bmf(tn+m,yn+m)

is fourth order only if the conditions a0 + a2 = 8 and a1 = −9 are satisfied. Hence deduce that
this method cannot be both fourth order and satisfy the root condition. (Compare this conclusion
with Theorem 8.9.)

6. An s-stage explicit Runge–Kutta method with constant step size h > 0 is applied to the
differential equation y′ = λy, t ≥ 0. Prove that, with some polynomial ps of degree s, we have

yn+1 = ps(λh)yn, ps ∈ Ps .

Hence derive that no explicit Runge-Kutta method can be A-stable (or even A0-stable). Further,
prove that if an s-stage RK method is of order s, then

ps(λh) =

s∑
m=0

1

m!
(λh)m .
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7. The following four-stage Runge–Kutta method has order four,

k1 = f(tn,yn)

k2 = f(tn + 1
3
h,yn + 1

3
hk1)

k3 = f(tn + 2
3
h,yn −

1
3
hk1 + hk2)

k4 = f(tn + h,yn + hk1 − hk2 + hk3)

yn+1 = yn + h
(1
8
k1 +

3
8
k2 +

3
8
k3 +

1
8
k4

)
.

By considering the equation y′ = y, show that the order is at most four. Then, for scalar f , prove
that the order is at least four in the case when f is independent of y. (In the last case, you may
relate the scheme to a quadrature formula.)

8. Find D ∩ R, the intersection of the linear stability domain D with the real axis, for the
following methods:

(1) yn+1 = yn + hf(tn,yn) (2) yn+1 = yn + 1
2
h[f(tn,yn) + f(tn+1,yn+1)]

(3) yn+2 = yn + 2hf(tn+1,yn+1) (4) yn+2 = yn+1 +
1
2
h[3f(tn+1,yn+1)− f(tn,yn)]

(5) The RK method: k1 = f(tn,yn), k2 = f(tn + h,yn + hk1), yn+1 = yn + 1
2
h(k1 + k2).

9. Show that, if z is a nonzero complex number that is on the boundary of the linear stability
domain of the two-step BDF method

yn+2 −
4
3
yn+1 +

1
3
yn = 2

3
hf(tn+2,yn+2) ,

then the real part of z is positive. Thus deduce that this method is A-stable.
10. The (stiff) differential equation

y′(t) = −104(y − t−1)− t−2, t ≥ 1, y(1) = 1,

has the analytic solution y(t) = t−1, t ≥ 1. Let it be solved numerically by Euler’s method
yn+1 = yn + hnf(tn, yn) and the backward Euler method yn+1 = yn + hnf(tn+1, yn+1), where
hn = tn+1 − tn is allowed to depend on n and to be different in the two cases. Suppose that, for
any tn ≥ 1, we have |yn − y(tn)| ≤ 10−6, and that we require |yn+1 − y(tn+1)| ≤ 10−6. Show that
Euler’s method can fail if hn = 2× 10−4, but that the backward Euler method always succeeds if
hn ≤ 10−2tnt

2
n+1.

Hint: Find relations between yn+1 − y(tn+1) and yn − y(tn) for general yn and tn.
11. This question concerns the predictor-corrector pair

yP
n+3 = −1

2
yn + 3yn+1 −

3
2
yn+2 + 3hf(tn+2,yn+2),

yC
n+3 = 1

11
[2yn − 9yn+1 + 18yn+2 + 6hf(tn+3,yn+3)].

Show that both methods are third order, and that the estimate of the error of the corrector formula
by Milne’s device has the value 6

17 |y
P
n+3 − yC

n+3|.
12. Let u(x), 0 ≤ x ≤ 1, be a six-times differentiable function that satisfies the ODE u′′(x) =

f(x), 0 ≤ x ≤ 1, u(0) and u(1) being given. Further, we let xm = mh = m/M , m = 0, 1, . . . ,M , for
some positive integer M , and calculate the estimates um ≈ u(xm), m = 1, 2, . . . ,M − 1, by solving
the difference equation

um−1 − 2um + um+1 = h2f(xm) + αh2[f(xm−1)− 2f(xm) + f(xm+1)], m = 1, 2, . . . ,M − 1,

where u0 = u(0), uM = u(1), and α is a positive parameter. Show that there exists a choice of α
such that the local truncation error of the difference equation is O(h6).
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