Variational principles: summary and problems

David Stuart
dmas2@cam.ac.uk

1 Introduction

Below is an expanded version of parts of the syllabus, intended to fix notation and terminology for doing the problems. It is not a complete summary. For learning all the material some combination of the lectures and the books

- Perfect Form, by Lemons (PUP), general
- Calculus of Variations, by Gelfand and Fomin (Dover) for calculus of variations
- Variational principles in dynamics and quantum theory, by Yourgrau and Mandelstam (Dover) for applications
- Convex optimization, Chapter 3, Boyd S., Vandneberghe L. (CUP) for convexity

should be used. (The last three books give much more detailed treatments than possible/necessary for this course.) The problems are at the end, starred problems being more difficult and not intended for supervision. Please send errors and corrections to the email address above.

2 Variational problems for functions on \(\mathbb{R}^n \)

\(\mathbb{R}^n \) is the the vector space with typical element \(\{ x = \sum_{i=1}^{n} x_i e_i \} \) where \(e_1 = (1,0,\ldots,0) \) etc.

2.1 Differentiability and first order conditions

If a function \(f : \mathbb{R}^n \to \mathbb{R} \) has partial derivatives \(\frac{\partial f}{\partial x_i} (x) = \lim_{t \to 0} t^{-1} (f(x + te_i) - f(x)) \) which exist and are continuous on \(\mathbb{R}^n \), it is a \(C^1(\mathbb{R}^n) \) function, and is differentiable at every \(x \) in the sense that \(f(x + h) - f(x) - \nabla f(x) \cdot h = o(\|h\|) \) as \(h \to 0 \). This means it can be approximated linearly, and the derivative is the linear map on \(\mathbb{R}^n \) given by \(Df(x)(h) = \nabla f(x) \cdot h \), which is linear in \(h \).

Lemma 2.1.1 (First order necessary condition) A local minimum (or maximum) of a \(C^1 \) function is a stationary point, i.e. the derivative vanishes there.

2.2 Second order conditions

If the partial derivatives up to order \(r \in \mathbb{N} \) exist and are continuous the function lies in \(C^r(\mathbb{R}^n) \).

Write the second order partial derivatives \(\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} \). For a \(C^2 \) function \(f(x + h) - f(x) - \nabla f(x) \cdot h = \frac{1}{2} \sum_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} (x) h_i h_j = o(\|h\|^2) \) as \(h \to 0 \).

A real symmetric matrix is positive (resp. non-negative) if \(\sum_{ij} A_{ij} v_i v_j > 0 \) (resp. \(\geq 0 \)) for all non-zero vectors \(v \), or equivalently if all its eigenvalues are positive (resp. non-negative).

Lemma 2.2.1 (Second order necessary conditions) If a stationary point \(x \) of a \(f \in C^2(\mathbb{R}^n) \) is a local maximum (resp. minimum) then \(\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \) is a non-positive (resp. non-negative) symmetric matrix.
Lemma 2.2.2 (Second order sufficient conditions) If \(f \in C^2(\mathbb{R}^n) \) and \(Df(x) = 0 \) and \(\partial^2_{ij} f(x) \) is a positive (resp. negative) symmetric matrix then \(x \) is a strict local minimum (resp. maximum).

2.3 Convexity

A subset \(S \subset \mathbb{R}^n \) is convex if for any \(x, y \) in \(S \) and any \(t \in [0, 1] \) the point \((1-t)x + ty \in S \). A function \(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(f((1-t)x + ty) \leq (1-t)f(x) + tf(y) \) for any \(x, y \) in \(\mathbb{R}^n \) and any \(t \in [0, 1] \) (or more generally it is convex on a convex subset \(S \) if this inequality holds for any \(x, y \) in \(S \) and any \(t \in [0, 1] \).) Further \(f \) is called strictly convex if the above inequality is strict whenever it can be i.e. for \(0 < t < 1 \) and \(x \neq y \). Affine functions, i.e. functions of the form \(f(x) = a + b \cdot x \), are examples of functions which are convex but not strictly convex.

Lemma 2.3.1 (Convexity: first order conditions) \(f \in C^1(\mathbb{R}^n) \) convex \(\iff \) \(f(y) \geq f(x) + \nabla f(x) \cdot (y-x) \) for all \(x, y \) \(\iff \) \((\nabla f(x) - \nabla f(y)) \cdot (x-y) \geq 0 \), for all \(x, y \).

As a corollary, this implies that if \(x \) is a stationary point of a convex \(C^1 \) function then it is a global minimum.

Also this shows that \(C^1 \) convex functions lie above their tangent planes.

Lemma 2.3.2 (Strict convexity: first order conditions) \(f \in C^1(\mathbb{R}^n) \) strictly convex \(\iff \) \(f(y) > f(x) + \nabla f(x) \cdot (y-x) \) for all \(x \neq y \) \(\iff \) \((\nabla f(x) - \nabla f(y)) \cdot (x-y) > 0 \) for all \(x \neq y \).

As a corollary, this implies that if \(f \in C^1(\mathbb{R}^n) \) is strictly convex, the equation \(\nabla f(x) = b \) can have no more than one solution. In particular, stationary points for strictly convex functions are unique.

Lemma 2.3.3 (Convexity: necessary and sufficient second order condition) \(f \in C^2(\mathbb{R}^n) \) is convex \(\iff \) \(\partial^2 f_{ij}(x) \geq 0 \forall x \).

Lemma 2.3.4 (Strict convexity: sufficient second order condition) \(f \in C^2(\mathbb{R}^n) \) is strictly convex if \(\partial^2 f_{ij}(x) > 0 \forall x \).

2.4 Lagrange multipliers

Consider a hypersurface \(C = \{x \in \mathbb{R}^n : g(x) = 0\} \) where \(g \in C^2(\mathbb{R}^n) \) satisfies \(\nabla g(x) \neq 0 \) for all \(x \). The vector \(n(x) = \nabla g(x)/\|\nabla g(x)\| \) is everywhere normal to \(C \).

Lemma 2.4.1 Let \(f \in C^2(\mathbb{R}^n) \). Then if \(f|_C \) has a maximum (resp. minimum) at \(x \in C \) then there exists \(\lambda \in \mathbb{R} \) such that \(\nabla h(x, \lambda) = 0 \) where \(h(x, \lambda) = f(x) - \lambda g(x) \), and furthermore \(\sum_{ij} \partial^2 h_{ij}(x, \lambda)v_i v_j \leq 0 \) (resp. \(\geq 0 \)) for all vectors \(v \) such that \(\mathbf{v} \cdot n = 0 \).

The function \(h \) is the Lagrange augmented function. The number \(\lambda \) is called the Lagrange multiplier.

For problems with several constraints \(\{g_a\}_{a=1}^l \), assume they are independent (in the sense that the matrix \(\partial_i g_a(x) \) has rank \(l \)) and consider \(h(x, \lambda) = f(x) - \sum \lambda_a g_a(x) \), and the corresponding result holds.

2.5 Legendre Transform

Given \(f : \mathbb{R}^n \to \mathbb{R} \) its Legendre transform \(g = f^* \) is given by \(g(p) = \sup(p \cdot x - f(x)) \), defined only for \(p \) such that this supremum is finite. The Legendre transform is automatically convex, and the generalized Young inequality

\[
f(x) + g(p) \geq p \cdot x
\]

follows immediately from the definition of \(g = f^* \). The inequality \(xy \leq a^{-1}x^a + b^{-1}y^b \) for \(a^{-1} + b^{-1} = 1 \) and \(a > 1 \) is a well-known special case (see exercises).
Theorem 2.5.1 If f is convex $f'' = f$.

This implies that a convex functions can always be expressed as a supremum of a family of affine functions. This fact also follows from lemma 2.3.1 - just take the family of affine functions to be those lying below the graph of f, and show that this family is non-empty (since it contains the tangent planes) and the supremum gives back f.

3 Variational problems for functionals

3.1 Generalities on functionals

Terminology: $C_C^n(a,b)$ is the space of smooth functions whose support is a closed bounded subset of the interval (a,b). The support of a function is the closure of the set where it is non-zero. A bump function in an interval $(x_0 - \epsilon, x_0 + \epsilon)$ is a function $b \in C^n_0(\mathbb{R})$ which is positive in $(x_0 - \epsilon, x_0 + \epsilon)$ and vanishes for $|x - x_0| \geq 0$. These can be constructed by translating and scaling the bump function on the interval $(-1,1)$ given by $e^{-(x-a)^2}$ for $x^2 < 1$ and extended with value zero outside the interval (exercise).

A functional is just a function on a set of functions. Since spaces of functions can be topologized in many equivalent ways, the continuity and differentiability of functionals is more subtle. For example the Dirac functional $\delta_0(\phi) = \phi(0)$ is continuous on $C(\mathbb{R})$ with the topology determined by the supremum (L^∞) norm $\|\phi\|_{L^\infty} = \max |\phi(x)|$, but not with respect to that determined by the L^2 norm (defined by $\|\phi\|_{L^2}^2 = \int |\phi(x)|^2 dx$). In contrast all norms on finite dimensional vector spaces define equivalent topologies. For this reason we will study differentiability of functionals only one direction at a time, i.e. will consider directional derivatives. The following lemma is useful:

Lemma 3.1.1 Let $g \in C([a,b])$ have the property that $\int_a^b g(x)\phi(x)dx = 0$ for all $\phi \in C^\infty_0(a,b)$. Then g vanishes identically throughout the interval.

Proof This follows using continuity and bump functions (exercise).

A slight variation on this lemma states that if $\int_a^b g(x)\phi'(x)dx = 0$ for all $\phi \in C^\infty_0(a, b)$ (notice the prime on ϕ) then g is a constant.

3.2 Directional derivatives of functionals

Let $f : \mathbb{R}^3 \to \mathbb{R}$ be smooth and consider the functional $I[y] = \int_a^b f(x,y,y')dx$ as a function on the space V of C^1 functions with $y(a) = \alpha$ and $y(b) = \beta$. Assume $I[y] = \min_{w \in V} I[w]$ then the function $i(\epsilon) = I[y + \epsilon \phi]$ has a minimum at $\epsilon = 0$ for all $\phi \in C^n_0(a,b)$, so that $i'(0) = DI[y](\phi) = \int_a^b (f_y \phi + f_{y'} \phi')dx$ vanishes for each such ϕ. The quantity $DI[y](\phi)$ is called the directional derivative of the functional I along ϕ. Assume further that $y \in C^2(a, b)$, then integration by parts gives, for $\phi \in C^\infty_0(a,b)$:

$$DI[y](\phi) = \int_a^b (f_y - \frac{d}{dx}(f_{y'})) \phi dx$$

and by lemma 3.1.1, we deduce that

$$\frac{\delta I}{\delta y} = (f_y - \frac{d}{dx}(f_{y'})) = 0$$

for a C^2 minimizer. The quantity $\frac{\delta I}{\delta y}$ is sometimes known as the functional derivative, and the mapping $DI[y] : \phi \mapsto DI[y](\phi)$ is called the first variation, and sometimes written δI. The equation

$$\frac{d}{dx}(f_{y'}) - f_y = 0$$

3
is the Euler-Lagrange equation associated to I. In fact it holds in integrated form $f_y' - \int_x^y f_y = \text{constant}$ even for C^1 minimizers - this can be deduced using the variation on lemma 3.1.1 mentioned above and an integration by parts trick.

4 Applications

4.1 Fermat principle

Light rays follow paths γ which minimize (or make stationary) the time $T = \int_1^2 c \sqrt{\| \dot{x}(t) \|} \, dt$, where $\| \dot{x}(t) \|$ is the element of arclength along γ and c is the speed of light, which may depend on position.

4.2 Geodesics

A (smooth) Riemannian metric on an open subset $U \subset \mathbb{R}^n$ is a (smooth) function $x \mapsto g_{ij}(x)$ from U into the space of real positive symmetric $n \times n$ matrices. The geodesics are C^2 curves which are stationary points for the length functional $l[x] = \int (g_{ij} \dot{x}_i \dot{x}_j) \, dt$, (where summation convention is understood.) They solve the equation

$$\frac{d}{dt} \left(g_{ij} \dot{x}_j \right) - \frac{1}{2} \frac{\partial g_{jk}}{\partial x_i} \dot{x}_j \dot{x}_k = 0.$$

Since the length functional is parametrization invariant, it is possible to choose the parameter t to be the arclength so that $g_{ij} \dot{x}_i \dot{x}_j = 1$, in which case the equation simplifies to

$$\frac{d}{dt} (g_{ij} \dot{x}_j) - \frac{1}{2} \frac{\partial g_{jk}}{\partial x_i} \dot{x}_j \dot{x}_k = 0.$$

This equation is the Euler-Lagrange equation associated to the “kinetic energy integral” $I[x] = \int (g_{ij} \dot{x}_i \dot{x}_j) \, dt$, so that an alternative definition of geodesic is a C^2 curve for which I is stationary - this definition automatically gives geodesics with a parametrization for which $g_{ij} \dot{x}_i \dot{x}_j = \text{constant}$, by the second conservation law (Noether theorem).

4.3 Lagrangian and Hamiltonian mechanics

The equation

$$m \ddot{x} + \nabla V = 0 \tag{4.1}$$

for a particle of mass $m > 0$ moving in a potential $V(x)$ can be derived as the Euler-Lagrangian associated to the action functional $S[x] = \int L(x, \dot{x}) \, dt$, where $L(x, \dot{x}) = \frac{1}{2} m \| \dot{x} \|^2 - V(x)$ is called the Lagrangian. This is the Lagrangian formulation of Newtonian mechanics. Since L is convex in \dot{x} the Legendre transformation in the velocity variables gives a function $H(x, p) = \sup_{\dot{x}} (p \cdot \dot{x} - L(x, \dot{x}))$ from which L can be recovered just by applying the Legendre transform again. The function H is the Hamiltonian, and gives an equivalent formulation of (4.1) in Hamiltonian form:

$$\dot{x}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial x_j}.$$

Convexity of the Lagrangian in the velocity variables ensures the possibility of going back and forth between the two formulations. Notice that the supremum in the definition of H is attained at the unique \dot{x} given by $p = m \dot{x}$: this defines the conjugate momentum.
5 The second variation

Consider the functional \(I[y] = \int_{a}^{b} f(x, y, y')dx \) on the space \(V \) of \(C^1 \) functions with \(y(a) = \alpha \) and \(y(b) = \beta \). Let \(V_0 \) be the vector space of \(C^1 \) functions with \(y(a) = 0 \) and \(y(b) = 0 \).

Definition 5.0.1 A function \(y \in V \) is a weak local minimizer for \(I \) if \(I[y+\phi] \geq I[y] \) for all \(\phi \in V_0 \) with \(\|\phi\|_{C^1} = \max_{[a,b]} |\phi(x)| + \max_{[a,b]} |\phi'(x)| \) sufficiently small. If the inequality is strict for such \(\phi \) not identically zero, the minimum is strict. There is a corresponding definition for weak maximum.

There is also a corresponding notion of strong minimizer for \(I \) with the norm \(\|\phi\|_{C^0} = \max_{[a,b]} |\phi(x)| \) used instead of \(\|\phi\|_{C^1} \), see Chapter 6 in Gelfand and Fomin.

Assuming, as always, that \(f \) is smooth, Taylor’s theorem implies that \(\forall \epsilon > 0 \exists \delta(\epsilon) > 0 \) such that for all \(x \in [a, b] \) and \(\|\phi\|_{C^1} < \delta \):

\[
|f(x, y + \phi, y' + \phi') - f(x, y, y') - \phi f_y(x, y, y') - \phi' f_{y'}(x, y, y') - Q| < \epsilon(|\phi|^2 + |\phi'|^2)
\]

where \(Q \) is the quadratic part of the Taylor expansion

\[
Q = \frac{1}{2} (\phi^2 f_{yy}(x, y, y') + 2\phi \phi' f_{yy'}(x, y, y') + \phi'^2 f_{y'y'}(x, y, y')).
\]

Here \(\phi, \phi' \) are evaluated with argument \(x \). From this follows a corresponding Taylor expansion for the functional \(I \):

\[
I[y + \phi] = I[y] + DI[y](\phi) + \frac{1}{2} D^2 I[y](\phi) + R
\]

where \(|R| < \epsilon \int_{a}^{b} (|\phi|^2 + |\phi'|^2)dx \) for \(\|\phi\|_{C^1} < \delta(\epsilon) \). The quadratic part

\[
D^2 I[y](\phi) = \int_{a}^{b} \left(\phi^2 f_{yy}(x, y, y') + 2\phi \phi' f_{yy'}(x, y, y') + \phi'^2 f_{y'y'}(x, y, y') \right)dx
\]

is sometimes called the second variation, and denoted \(\delta^2 I \). From this we can read off:

Lemma 5.0.2 (Necessary conditions) If \(y \in V \) is a weak minimum then \(DI[y](\phi) = 0 \forall \phi \in V_0 \) and the second variation \(D^2 I[y](\phi) \geq 0 \forall \phi \in V_0 \).

Lemma 5.0.3 (Sufficient conditions) Assume \(y \in V \) is such that \(DI[y](\phi) = 0 \forall \phi \in V_0 \) and the second variation satisfies, for some \(c > 0 \),

\[
D^2 I[y](\phi) \geq c \int_{a}^{b} (|\phi|^2 + |\phi'|^2)dx \forall \phi \in V_0.
\]

Then \(y \) is a weak local minimum.

Recall that if \(y \) is \(C^2 \) it solves the Euler-Lagrange equation if \(DI[y](\phi) = 0 \forall \phi \in V_0 \). The fact that \(\phi(a) = 0 = \phi(b) \) means that in this case the formula for the second variation can be put into Sturm-Liouville form:

\[
D^2 I[y](\phi) = \int_{a}^{b} (p(x)\phi'^2 + q(x)\phi^2)dx
\]

where \(p(x) = f_{y'y'}(x, y(x), y'(x)) \) and \(q(x) = f_{yy}(x, y(x), y'(x)) - \frac{f_{yy'}}{y'}(f_{yy'}(x, y(x), y'(x))). \) One explicit approach to determining whether (5.2) holds for some \(c > 0 \) is to calculate the eigenvalues of the Sturm-Liouville operator \(L = -(p\phi')' + q\phi \). There are also general conditions which ensure (5.2): it is sufficient that \(p(x) > 0 \) on \([a, b]\) and that there are no conjugate points, i.e. there are no points \(\tilde{a} \in (a, b) \) such that there is a non-trivial function \(h \) such that \(Lh = 0 \) and \(h(a) = 0 = h(b) \). This is proved in theorem 1 in section 26 of Gelfand and Fomin.
6 Example sheet 1

1. Prove that if \(f \in C^1(\mathbb{R}) \) has only one stationary point which is a local minimum, then it must be a global minimum. Give a counter-example to show this is false in \(\mathbb{R}^2 \).

2. * Prove that a real symmetric matrix \(A_{ij} \) is \(> \) in the sense defined in \(\S2.2 \), iff all its eigenvalues are positive.

3. * Prove, using the Bolzano-Weierstrass property, but without using diagonalizability, that if a real symmetric matrix \(A_{ij} \) \(> 0 \) then \(\sum_{ij} A_{ij}v_i v_j \geq c\|v\|^2 \) for some \(c > 0 \). (After analysis II).

4. * Let \(f \in C^2(\mathbb{R}^2) \) have a stationary point \(x = (x_1, x_2) \) and let \(A_{ij} = \partial_{ij}^2 f(x) \). Show that \(A_{11} + A_{22} > 0 \) and \(A_{11} A_{22} - A_{12}^2 > 0 \) implies \(A_{ij} > 0 \) so that \(x \) is a strict local minimum.

5. Given \(f: \mathbb{R}^n \to \mathbb{R} \) define its epigraph to be \(E_f = \{(x, z) : z \geq f(x)\} \subset \mathbb{R}^{n+1} \). Show that \(f \) is a convex function iff \(E_f \) is convex subset.

6. Give an example of a function which is strictly convex but whose second derivative is not everywhere > 0.

7. Show that \(x^2/y \) is convex on the upper half plane \((x, y) : y > 0 \). * Show that if \(f \in C^2(\mathbb{R}) \) is convex then the function \(yf(y^{-1}x) \) is convex on \((x, y) : y > 0 \).

8. Given a family \(L^\alpha(x) \) of affine functions indexed by \(\alpha \in \mathbb{N} \), (or in fact an arbitrary index set) show that \(f(x) = \sup_\alpha L^\alpha(x) \) is convex. * Show that all \(C^1 \) convex functions arise in this way.

9. * With \(L^\alpha \) as in the previous question, show that the function \(f(x) = \inf_\alpha L^\alpha(x) \) is concave.

10. For \(A \) any real symmetric \(n \times n \) matrix consider \(\lambda(A) = \sup_{p \in \mathbb{R}^n : \|p\| = 1} v \cdot (Av) \). Use Lagrange multipliers to show that \(\lambda(A) \) is the largest eigenvalue of \(A \). * Also prove that \(\lambda \) is a convex function of \(A \). (Assume the fact from analysis II that a continuous function on the sphere \(\{v \in \mathbb{R}^n : \|v\| = 1\} \) attains its supremum.)

11. The area \(A \) of a triangle with sides \(a, b, c \) is given by

\[
A = \sqrt{s(s-a)(s-b)(s-c)}, \quad \text{where} \ s = \frac{1}{2}(a+b+c).
\]

(i) Show that of all triangles of given perimeter \(2s \), the triangle of largest area is equilateral.

(ii) Find (in terms of the perimeter) the largest possible area of a right-angled triangle of given perimeter.

12. Prove that the Legendre transform of a function is always convex.

13. Find the Legendre transform of \(f(x) = e^x \), (giving its domain also). Find the Legendre transform of \(f(x) = a^{-x}x^a, a > 1 \) defined on \(x > 0 \), and deduce \(xy \leq a^{-1}x^a + b^{-1}y^b \) for \(a^{-1} + b^{-1} = 1 \) (Young).

14. * Find the Legendre transform of \(f(x) = \frac{1}{2} \sum_{ij} A_{ij}x_i x_j \) where \(A_{ij} \) is a positive symmetric matrix.

15. For an ideal gas, the internal energy \(U = U(S, V) \) as a function of entropy and volume is

\[
U = U_0 + \alpha nRT_0 \left(\frac{V_0}{V} \right)^\frac{3}{4} e^{\frac{S-S_0}{nRT}} - 1
\]

for some constants \(U_0, T_0, V_0, S_0, \alpha, n, R \). Calculate the pressure and temperature (defined by \(dU = TdS - pdV \), and verify that \(pV = nRT \) (ideal gas equation of state). Calculate also the constant volume heat capacity \(C_V = T \frac{\partial U}{\partial T} |_V \), and comment on the convexity of \(U \) as a function of \(S \). Calculate the Helmholtz free energy \(F = F(T, V) \) defined by \(F(T, V) = \min_S (U(S, V) - TS) \). [In this formula \(T \) is a fixed number - do not substitute for \(T \) from the formula you derived in the first part of the question!]

16. * For black body radiation the internal energy \(U = U(S, V) \) as a function of entropy and volume is

\[
U(S, V) = \left(\frac{3S}{4} \right)^\frac{1}{4} \left(\frac{1}{CV} \right)^\frac{1}{4}
\]

where \(C \) is a constant. Calculate \(P, T \) as in the previous question and verify that the energy density (i.e. the internal energy per unit volume) is \(CT^4 \) and that the value of the pressure is \(\frac{1}{3} \) of the energy density. Calculate the Helmholtz free energy \(F = F(T, V) \) defined by \(F(T, V) = \min_S (U(S, V) - TS) \), and show that its value is \(-\frac{1}{3}U \).
17. Show that the Euler-Lagrange equation of the functional
\[I[y] = \int_{x_1}^{x_2} f(y, y')dx = 0, \quad y(x_1) = y_1 \text{ and } y(x_2) = y_2 \text{ fixed} \]
has the first integral \(f(y, y') - y' \frac{\partial}{\partial y'} f(y, y') = \) constant. The curve assumed by a uniform cable which is suspended between two points \((-a, b)\) and \((a, b)\) minimises the potential energy
\[\int_{-a}^{a} y(1 + y'^2)^{1/2}dx \]
subject to the constraint that its length remains fixed,
\[\int_{-a}^{a} (1 + y'^2)^{1/2}dx = 2L, \]
where \(L > a \). Using the Lagrange multiplier method, show that the curve is a catenary
\[y - y_0 = c \cosh \left(\frac{x - x_0}{c} \right), \]
where \(c, x_0 \) and \(y_0 \) are constants. * Find an equation for \(c \), and show that it has a unique positive solution.

18. Write down the Euler-Lagrange equation for the functional
\[I[u] = \int_{-\infty}^{+\infty} \frac{1}{2} u'' + (1 - \cos u)dx \]
and find all solutions which satisfy \(\lim_{x \to -\infty} u(x) = 0 \) and \(\lim_{x \to +\infty} u(x) = 2\pi \).
Show that if \(u \in C^1(\mathbb{R}) \) satisfies \(\lim_{x \to -\infty} u(x) = 0 \) and \(\lim_{x \to +\infty} u(x) = 2\pi \)
\[I[u] = \frac{1}{2} \int_{-\infty}^{+\infty} (u'' - 2 \sin \frac{u}{2})^2 dx + 8. \]
Deduce that a lower bound for \(I[u] \) amongst such functions is \(8 \), and give a first order differential equation which \(u \) must satisfy in order to realize this lower bound. Show that any solution of this first order equation solves the Euler-Lagrange equation you derived in the first part of the question. Give all the functions satisfying \(I[u] = 8 \).

19. * The brachistochrome problem leads to the study of the functional \(I[y] = \int_0^X \sqrt{1 + y'^2} dx \)
for \(C^1 \) curves \(y = y(x) > 0 \) such that \(y(0) = 0 \) and \(y(X) = Y > 0 \). Make the change of variables \(y = \phi^2 \), and show that \(I[\phi] = I[\phi^2] = \int_0^X (\phi^{-2} + 4\phi'^2) \frac{1}{2} dx \). Show that the function \(l(u, v) = (u^{-2} + 4v^2)^{1/2} \) is strictly convex on \(\{(u, v) : u > 0\} \in \mathbb{R}^2 \). (This can be used to prove the cycloid solution which we obtained as a solution of the Euler-Lagrange equation, which is only a necessary condition for a minimizer, actually does minimize \(I \).
Write down the Euler-Lagrange equation for \(I[\phi] \), solve for \(\phi \) and show that the solutions are cycloids, as for the Euler-Lagrange equation for \(I \).

20. Obtain the Euler-Lagrange equation for the function \(x(t) \) that makes stationary the integral
\[\int_{t_1}^{t_2} f(t, x(t), \dot{x}(t), \ddot{x}(t))dt \]
for fixed values of both \(x(t) \) and \(\dot{x}(t) \) at both \(t = t_1 \) and \(t = t_2 \).
Find the function \(x(t) \) with \(x(1) = 1, \dot{x}(1) = -2, x(2) = \frac{1}{2} \) and \(\ddot{x}(2) = -\frac{1}{2} \), that minimises
\[\int_1^2 t^4[\ddot{x}(t)]^2 dt, \]
including a demonstration that it is a minimizer (not just a stationary point) for the integral.
7 Example sheet 2

1. Consider the problem of maximizing the area \(\frac{1}{2} \int_0^{2\pi} (x\dot{y} - y\dot{x})dt \) enclosed by a closed curve of fixed length \(l = \int_0^{2\pi} (\dot{x}^2 + \dot{y}^2) dt \). Write down and solve the Euler-Lagrange equations for this constrained problem in parametric form.

2. Consider the problem of minimizing \(I[\psi] = \int_{-\infty}^{+\infty} (\psi'^2 + x^2\psi^2) dx \) amongst functions with \(\int \psi^2 dx = 1 \).
 (i) Write down the corresponding Euler-Lagrange equation for this constrained problem.
 (ii) Show that under the assumption \(x\psi(x)^2 \to 0 \) as \(x \to +\infty \) it is possible to write \(I[\psi] = 1 + \int_{-\infty}^{+\infty} (\psi' + x\psi)^2 dx \), and hence show that amongst such functions the minimum value of \(I \) is 1 and is attained on a function which should be given explicitly. Verify that this function satisfies the Euler-Lagrange equation you wrote down in (i), for an appropriate value of the Lagrange multiplier.
 (iii) * Use the method of power series solutions to solve the Euler-Lagrange equation in (i), and comment on the relation with the minimizing function you obtained in (ii). (Here you may find it useful to rewrite the Euler-Lagrange equation as an equation for \(f = e^{\frac{x^2}{2}} \psi(x) \)).

3. Obtain the Euler-Lagrange equations associated to the functionals
 (i) \(I[u] = \int (\frac{1}{2} u_t^2 - F(u_x)) dx dt \),
 (ii) * \(I[u] = \frac{1}{2} \int (u_t^2 - c(u_x)u_x^2) dx dt \),
 where \(u = u(t,x) \) is a function on \(\mathbb{R}^2 \), where \(F \) and \(c \) are given smooth functions.

4. Obtain the Euler-Lagrange equations associated to the functionals
 (i) \(I[u] = \int (|\nabla u|^2 + e^{2u}) dx dy \),
 (ii) * \(I[u] = \int (\text{det } Du) dx dy \),
 where \(u : \mathbb{R}^2 \to \mathbb{R}^2 \), and \(\text{det } Du \) means the Jacobian determinant. What is unusual about the second example?

5. Consider \(I[y] = \int_{-1}^{1} (xy')^2 dx \) for \(y(x) \) in the set \(S \) of \(C^1 \) functions such that \(y(1) = 1 \) and \(y(-1) = -1 \). By considering \(y(x) = \frac{\arctan x}{\sqrt{x^2 + 1}} \) show that \(\inf_{y \in S} I[y] = 0 \). Show that this infimum is not attained in \(S \).

6. Consider \(I[y] = \int_{-1}^{1} (1 - y_x^2)^2 dx \) with \(y = y(x) \) lying in the set \(S' \) of piecewise \(C^1 \) functions such that \(y(\pm1) = 1 \). By considering \(y(x) = |x| \) show that the minimum \(I[y] \) is \(0 \). Does there exist a \(C^1 \) (not just piecewise \(C^1 \)) function for which this value is attained?

7. The smooth functions \(p(x), q(x) \) and \(w(x) \geq 0 \) are prescribed on \([a,b]\), with \(w \) not identically zero. Show that the following three conditions are equivalent for \(C^2 \) functions \(y(x) \) satisfying \(y(a) = 0 = y(b) \):
 (i) \(y \) satisfies: \((py')' - qy = -\lambda wy \);
 (ii) \(I[u] = \int_a^b (pu'^2 + qu^2) dx \) is stationary at \(u = y \) amongst \(C^1 \) functions satisfying the boundary conditions and subject to the constraint \(\int_a^b wu^2 dx = \text{constant} \);
 (iii) \(Q[u] = \int_a^b (pu'^2 + qu^2) dx / \int_a^b wu^2 dx \), is stationary amongst \(C^1 \) functions satisfying the boundary conditions at \(u = y \). What is the value of \(Q[y] \)? (Assume that \(y \) is not identically zero, and that \(w > 0 \) in \((a,b)\) so that so that the denominator \(\int_a^b wu^2 dx \) in (iii) is non-zero.)

8. Let \(\mathbf{x}(t) \in \mathbb{R}^3 \) be a curve which is constrained to lie on the sphere \(S^2 = \{ \mathbf{x} : \|\mathbf{x}\| = 1 \} \). Use the Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation
 \[\ddot{x} + ||\dot{x}||^2 x = 0 \]
 for the problem of minimizing \(I[\mathbf{x}] = \int ||\dot{\mathbf{x}}||^2 dt \) amongst curves satisfying the constraint \(\mathbf{x}(t) \in S^2 \). Show that the solutions of the Euler-Lagrange equation lie on a plane through the origin (they are great circles.)

9. * As an alternative approach to (7.3), let \(\theta, \phi \) be standard angles given by spherical coordinates, and assume the curve on \(S^2 \) is given as \(\phi = \phi(\theta) \). Show that the length integral
10. * Obtain (7.3) by considering variations of the curve \(x(t) \) of the form

\[x'(t) = \frac{x(t) + \epsilon z(t)}{\|x(t) + \epsilon z(t)\|} \]

which lie on \(S^2 \) and requiring \(\frac{d^2}{d\epsilon^2}I[x'] = 0 \) at \(\epsilon = 0 \) for every smooth \(z(t) \).

11. * For the brachistochrone problem, show that the minimum travel time between two points at the same level and a distance \(l \) apart is \((2\pi l/g)^{1/2} \) for a bead moving on a wire under the action of gravity without friction. The acceleration due to gravity is \(g \).

12. * For the brachistochrone problem, show that there is a unique arc of a cycloid (without a cusp) from the starting point \((0, 0)\) to a point \((X, Y)\) below the starting point.

13. In an optical medium filling the region \(0 < y < h \), the speed of light is

\[c(y) = \frac{c_0}{(1 - ky)^{1/2}} \quad (0 < k < 1/h). \]

Show that the paths of light rays in the medium are parabolic. Show also that, if a ray enters the medium at \((-x_0, 0)\) and leaves it at \((x_0, 0)\), then

\[(kx_0)^2 = 4ky_0(1 - ky_0), \]

where \(y_0 \) is the greatest value of \(y \) attained on the ray path.

14. * Hamilton’s Principle is applicable also to the relativistic dynamics of a charged particle in an electromagnetic field. The appropriate choice of Lagrangian \(L[t, x(t), \dot{x}(t)] \) is

\[L = -m_0c^2\gamma^{-1} + qA_0 + qv \cdot A, \]

with the Lorentz factor \(\gamma = (1 - v^2/c^2)^{-1/2} \), and where \(x \) is the position and \(v = \dot{x}(t) \) is the velocity of a particle of rest-mass \(m_0 \) and charge \(q \) in fields determined by a given scalar potential \(A_0(x, t) \) and a given vector potential \(A(x, t) \). Verify that the Euler-Lagrange equations, with this choice of \(L \), yield the equation of motion

\[\frac{d}{dt}(m_0\gamma v) = q(E + v \times B), \]

where the electric field \(E = \nabla A_0 - \frac{\partial A}{\partial t} \) and the magnetic field \(B = \nabla \times A \).

15. * With \(E \) and \(B \) as in the previous question, obtain the Euler-Lagrange equations associated to the functional \(I[A] = \int (E^2 - B^2)\,dx\,dt \). (This gives two of Maxwell’s equations).

16. For the length functional for curves in the plane \(I[y] = \int_0^1 (1 + y'^2)^{1/2}\,dx \), with \(y(a) = \alpha \) and \(y(b) = \beta \) show that the straight line \(y = y_0(x) \) joining \((a, \alpha)\) to \((b, \beta)\) solves the Euler-Lagrange equation. Compute the second variation of \(I \) at \(y_0 \) and show that it is positive.

17. For \(I[y] = \int_a^b (y'^2 + y^4)\,dx \) with \(y(a) = \alpha \), \(y(b) = \beta \) find the Euler-Lagrange equation and the second variation. For the case \(\alpha = 0 = \beta \) write down the solution of the Euler-Lagrange equation and the second variation explicitly, and show that the second variation is strictly positive.

18. For \(I[y] = \int_0^1 \left(\frac{1}{2}y'^2 + F(y) \right)\,dx \) with \(y(0) = 0 = y(1) \). Assume that \(F \in C^2(\mathbb{R}) \) satisfies \(F''(0) = 0 \). Write down the associated Euler-Lagrange equation, and show that \(y_0(x) = 0 \) is a solution. Find the second variation. Give (i) a condition on \(F''(0) \) which ensures that the second variation is positive, and (ii) a condition which ensures the second variation has at least one negative eigenvalue.
8 Additional questions

1. The following questions from recent methods exams are good for practice with Lagrange multipliers, Euler-Lagrange equations etc: 2008 1/II/14D and 2/1/5D, 2007: 3/1/6E and 4/II/16E, 2006: 2/1/5A and 4/II/16B.

2. At how many points in \mathbb{R}^3 does the function

$$\phi(x_1, x_2, x_3) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) - x_2x_3 - x_3x_1 - x_1x_2$$

take its minimum value? Show that this least value is -3. Show also that ϕ has one saddle point, at which the surface of vanishing ϕ is tangent to a double cone of semi-angle $\tan^{-1}(\sqrt{2})$.

3. Find the maximum volume of a rectangular parallelepiped inscribed inside an ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.

4. *Show that if $f : (a, b) \to \mathbb{R}$ is convex the one-sided difference quotients $\phi_n(h) = h^{-1}(f(x + h) - f(x))$, $h > 0$ are non-decreasing i.e. $\phi_n(h) \leq \phi_n(k)$ if $0 < h \leq k$. Deduce that the right derivative $D^+_f(x) = \lim_{h \to 0^+} \phi_n(h)$ exists in $-\infty \cup \mathbb{R}$. By considering $\phi_{+1}(l)$ for $l > 0$ show that for any $x \in \mathbb{R}$ the $\phi_{+1}(h)$ are bounded below for $h > 0$ so that the right derivative $D^+_f(x)$ just defined is finite for all x for a convex function with domain \mathbb{R} like f. Show that if the domain of f is only an interval that the same is true for x an interior point of the interval. Give an example of a convex function defined only on $[0, \infty)$ for which the right derivative at $x = 0$ is $-\infty$.

5. *Consider $I[y] = \int_a^b f(x, y, y')dx$ with $y(a) = \alpha, y(b) = \beta$, where f is a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$. Consider variations of the form $y'(x) = y(x + \epsilon \phi(x))$ where $\phi \in C^1_0(a, b)$, and compute $\frac{d}{d\epsilon} I[y']|_{\epsilon=0}$; show that if y is such that this is zero for all such ϕ then the conservation law $y'f_x - f = \text{constant}$ holds.

6. Consider the area of a surface obtained by rotating a curve $y = y(x)$ with $y(a) = \alpha$ and $y(b) = \beta$ about the y-axis. Write down an integral for the area, and solve the associated Euler-Lagrange equation.

7. Consider $I[y] = \int_a^b f(x, y, y')dx$ with $y(a) = \alpha$ but $y(b)$ is not fixed. As usual f is a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$. Show that if $y \in C^2$ minimizes I amongst C^1 functions with $y(a) = \alpha$ then as well as the Euler-Lagrange equation it satisfies the additional boundary condition $f_y(b, y(b), y'(b)) = 0$. Together with the initial condition this gives the correct number of boundary conditions for the second order Euler-Lagrange equation. Boundary conditions which are a consequence of a variational problem in this way are called natural. What is the natural boundary condition for $I[u] = \int_0^1 (\frac{1}{2} \nabla u^2 - gu)dx$ where B is the unit ball in \mathbb{R}^n?

8. Find the Hamiltonian obtained via the Legendre transformation from the Lagrangian $L = \frac{1}{2} g_{ij} \dot{x}_i \dot{x}_j - V(x)$ (summation convention assumed).

9. Find the Hamiltonian for the relativistic dynamics of a charged particle by applying the Legendre transformation to the Lagrangian $L = -m_0 c^2 \gamma^{-1} - q A_0 - q \mathbf{v} \cdot \mathbf{A}$, which appears in sheet II.

10. Write down the Euler-Lagrange equation associated to $I[u] = \int_{-\infty}^{\infty} \left(\frac{1}{2} u'^2 + (1 - \cos u) \right)dx$ and show that $u(x) = 4 \arctan e^x$ is a solution with boundary conditions $\lim_{x \to -\infty} u(x) = 0$ and $\lim_{x \to +\infty} u(x) = 2\pi$. (i) Calculate the second variation, and (ii) use the method of power series to find the eigenvalues of the associated Sturm-Liouville operator.

11. (i) Consider the functional $I[u] = \int_{-\pi}^{\pi} \left(\frac{1}{2} u'^2 - fu \right)dx$ where u and f are real 2π-periodic functions with zero mean: $\int_{-\pi}^{\pi} u(x)dx = 0 = \int_{-\pi}^{\pi} f(x)dx$. Write down the Euler-Lagrange equation.

(ii) Now consider the case that u, f are given by finite sums of exponentials:

$$u(x) = \sum_{0 < |n| \leq N} u_n e^{inx}, \quad f(x) = \sum_{0 < |n| \leq N} f_n e^{inx}$$

with the reality conditions $\bar{u}_n = u_{-n}, \bar{f}_n = f_{-n}$ and N any positive integer. Show that
\(J[u] = 2\pi J_N[u] \) where \(u = (u_1, u_2, \ldots, u_n) \in \mathbb{C}^N \) and

\[
J_N[u] = \sum_{n=1}^{N} n^2|u_n|^2 - f_n u_n - \bar{f}_n \bar{u}_n
\]

Use completion of the square to show that the minimum of \(J_N \) is attained for some unique \(u \), and show that the corresponding function \(u \) solves the Euler-Lagrange equation in (i).

(iii)* Use the direct method to prove the existence of a minimizer for \(J_N \) as follows. First show that \(J_N \) is bounded below, and let \(\{u^{(n)}\}_{\alpha=1}^{\infty} \) be a sequence such that \(J_N[u^{(n)}] \to \inf_{u \in \mathbb{C}^N} J_N[u] \) as \(\alpha \to \infty \). Show that there is a subsequence which converges to a limit point \(u \) which is a minimizer, i.e. \(J_N[u] = \inf_{u \in \mathbb{C}^N} J_N[u] \). Finally, deduce by considering the stationary condition satisfied by minimizers for \(J_N \), that this minimizer is the same as the one you obtained in (ii).

(iv)* [After Methods and Analysis II] Extend your argument in (iii) to the case \(N = +\infty \) and show that amongst sequences such that \(\sum_{n=1}^{\infty} n^2|u_n|^2 < \infty \) there is one that minimizes \(J_\infty \). Work under the assumption that \(f \) is given by an absolutely convergent Fourier series. (Hint: look up Cantor diagonalization.)