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Variational principles: summary and problems

David Stuart

dmas2@cam.ac.uk

1 Introduction

Below is an expanded version of parts of the syllabus, intended to fix notation and terminology
for doing the problems. It is not a complete summary. For learning all the material some
combination of the lectures and the books

• Perfect Form, by Lemons (PUP), general

• Calculus of Variations, by Gelfand and Fomin (Dover) for calculus of variations

• Variational principles in dynamics and quantum theory, by Yourgrau and Mandelstam
(Dover) for applications

• Convex optimization, Chapter 3, Boyd S., Vandneberghe L.(CUP) for convexity

should be used. (The last three books give much more detailed treatments than possible/necessary
for this course.) The problems are at the end, starred problems being more difficult and not in-
tended for supervision. Please send errors and corrections to the email address above.

2 Variational problems for functions on R
n

R
n is the the vector space with typical element {x =

∑n
i=1 xiei} where e1 = (1, 0, . . . , 0) etc.

2.1 Differentiability and first order conditions

If a function f : R
n → R has partial derivatives ∂if(x) = limt→0 t−1(f(x + tei) − f(x)) which

exist and are continuous on R
n, it is a C1(Rn) function, and is differentiable at every x in the

sense that f(x + h) − f(x) −∇f(x) · h = o(‖h‖) as h → 0. This means it can be approximated
linearly, and the derivative is the linear map on R

n given by Df(x)(h) = ∇f(x) · h, which is
linear in h.

Lemma 2.1.1 (First order necessary condition) A local minimum (or maximum) of a C1

function is a stationary point, i.e. the derivative vanishes there.

2.2 Second order conditions

If the partial derivatives up to order r ∈ N exist and are continuous the function lies in Cr(Rn).

Write the second order partial derivatives ∂2
ijf = ∂2f

∂xi∂xj
. For a C2 function f(x + h) − f(x) −

∇f(x) · h − 1
2

∑

ij ∂2
ijf(x)hihj = o(‖h‖2) as h → 0.

A real symmetric matrix is positive (resp. non-negative) if
∑

ij Aijvivj > 0 (resp. ≥ 0) for

all non-zero vectors v, or equivalently if all its eigenvalues are positive (resp. non-negative).

Lemma 2.2.1 (Second order necessary conditions) If a stationary point x of a f ∈ C2(Rn)
is a local maximum (resp. minimum) then ∂2

ijf(x) is a non-positive (resp. non-negative) sym-
metric matrix.
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Lemma 2.2.2 (Second order sufficient conditions) If f ∈ C2(Rn) and Df(x) = 0 and
∂2

ijf(x) is a positive (resp. negative) symmetric matrix then x is a strict local minimum (resp.
maximum).

2.3 Convexity

A subset S ⊂ R
n is convex if for any x,y in S and any t ∈ [0, 1] the point (1 − t)x + ty ∈ S. A

function f : R
n → R is convex if f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y) for any x,y in R

n and
any t ∈ [0, 1] (or more generally it is convex on a convex subset S if this inequality holds for any
x,y in S and any t ∈ [0, 1].) Further f is called strictly convex if the above inequality is strict
whenever it can be i.e. for 0 < t < 1 and x 6= y. Affine functions, i.e. functions of the form
f(x) = a + b · x, are examples of functions which are convex but not strictly convex.

Lemma 2.3.1 (Convexity: first order conditions) f ∈ C1(Rn) convex ⇐⇒ f(y) ≥
f(x) + ∇f(x) · (y − x) for all x,y ⇐⇒ (∇f(x) −∇f(y)) · (x − y) ≥ 0, for all x,y.

As a corollary, this implies that if x is a stationary point of a convex C1 function then it is a
global minimum.

Also this shows that C1 convex functions lie above their tangent planes.

Lemma 2.3.2 (Strict convexity: first order conditions) f ∈ C1(Rn) strictly convex ⇐⇒
f(y) > f(x) +∇f(x) · (y−x) for all x 6= y, ⇐⇒ (∇f(x)−∇f(y)) · (x−y) > 0 for all x 6= y.

As a corollary, this implies that if f ∈ C1(Rn) is strictly convex, the equation ∇f(x) = b can
have no more than one solution. In particular, stationary points for strictly convex functions are
unique.

Lemma 2.3.3 (Convexity: necessary and sufficient second order condition) f ∈ C2(Rn)
is convex ⇐⇒ ∂2fij(x) ≥ 0 ∀x.

Lemma 2.3.4 (Strict convexity: sufficient second order condition) f ∈ C2(Rn) is strictly
convex if ∂2fij(x) > 0 ∀x.

2.4 Lagrange multipliers

Consider a hypersurface C = {x ∈ R
n : g(x) = 0} where g ∈ C2(Rn) satisfies ∇g(x) 6= 0 for all

x. The vector n(x) = ∇g(x)/‖∇g(x)‖ is everywhere normal to C.

Lemma 2.4.1 Let f ∈ C2(Rn). Then if f
∣

∣

C has a maximum (resp. minimum) at x ∈ C then

there exists λ ∈ R such that ∇h(x, λ) = 0 where h(x, λ) = f(x) − λg(x), and furthermore
∑

ij ∂2hij(x, λ)vivj is ≤ 0 (resp. ≥ 0) for all vectors v such that v · n = 0.

The function h is the Lagrange augmented function. The number λ is called the Lagrange
multiplier.

For problems with several constraints {gα}l
α=1, assume they are independent (in the sense that

the matrix ∂igα(x) has rank l) and consider h(x, λ) = f(x)−∑

λαgα(x), and the corresponding
result holds.

2.5 Legendre Transform

Given f : R
n → R its Legendre transform g = f∗ is given by g(p) = sup(p · x − f(x)), defined

only for p such that this supremum is finite. The Legendre transform is automatically convex,
and the generalized Young inequality

f(x) + g(p) ≥ p · x

follows immediately from the definition of g = f∗. The inequality xy ≤ a−1xa + b−1yb for
a−1 + b−1 = 1 and a > 1 is a well-known special case (see exercises).

2
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Theorem 2.5.1 If f is convex f∗∗ = f .

This implies that a convex functions can always be expressed as a supremum of a family of affine
functions. This fact also follows from lemma 2.3.1 - just take the family of affine functions to be
those lying below the graph of f , and show that this family is non-empty (since it contains the
tangent planes) and the supremum gives back f .

3 Variational problems for functionals

3.1 Generalities on functionals

Terminology: C∞
0 (a, b) is the space of smooth functions whose support is a closed bounded subset

of the interval (a, b). The support of a function is the closure of the set where it is non-zero.
A bump function in an interval (x0 − ǫ, x0 + ǫ) is a function b ∈ C∞

0 (R) which is positive in
(x0− ǫ, x0 + ǫ) and vanishes for |x−x0| ≥ 0. These can be constructed by translating and scaling

the bump function on the interval (−1, 1) given by e
−1

(1−x2)2 for x2 < 1 and extended with value
zero outside the interval (exercise).

A functional is just a function on a set of functions. Since spaces of funtions can be topologized
in many inequivalent ways, the continuity and differentiability of functionals is more subtle. For
example the Dirac functional δ0(φ) = φ(0) is continuous on C(R) with the topology determined
by the supremum (L∞) norm ‖φ‖L∞ = max |φ(x)|, but not with respect to that determined by
the L2 norm (defined by ‖φ‖2

L2 =
∫

|φ(x)|2dx). In contrast all norms on finite dimensional vector
spaces define equivalent topologies. For this reason we will study differentiability of functionals
only one direction at a time, i.e. will consider directional derivatives. The following lemma is
useful:

Lemma 3.1.1 Let g ∈ C([a, b]) have the property that
∫ b

a
g(x)φ(x)dx = 0 for all φ ∈ C∞

0 (a, b).
Then g vanishes identically throughout the interval.

Proof This follows using continuity and bump functions (exercise).

A slight variation on this lemma states that if
∫ b

a
g(x)φ′(x)dx = 0 for all φ ∈ C∞

0 (a, b) (notice
the prime on φ) then g is a constant.

3.2 Directional derivatives of functionals

Let f : R
3 → R be smooth and consider the functional I[y] =

∫ b

a
f(x, y, y′)dx as a function

on the space V of C1 functions with y(a) = α and y(b) = β. Assume I[y] = minw∈V I[w]
then the function i(ǫ) = I[y + ǫφ] has a minimum at ǫ = 0 for all φ ∈ C∞

0 (a, b), so that

i′(0) = DI[y](φ) =
∫ b

a
(fyφ + fy′φ′)dx vanishes for each such φ. The quantity DI[y](φ) is called

the directional derivative of the functional I along φ. Assume further that y ∈ C2(a, b), then
integration by parts gives, for φ ∈ C∞

0 (a, b):

DI[y](φ) =

∫ b

a

(

fy − d

dx
(fy′)

)

φdx

and by lemma 3.1.1, we deduce that

δI

δy
=

(

fy − d

dx
(fy′)

)

= 0

for y a C2 minimizer. The quantity δI
δy is sometimes known as the functional derivative, and

the mapping DI[y] : φ 7→ DI[y](φ) is called the first variation, and sometimes written δI. The
equation

d

dx
(fy′) − fy = 0

3
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is the Euler-Lagrange equation associated to I. In fact it holds in integrated form fy′ −
∫ x

a
fy =

constant even for C1 minimizers - this can be deduced using the variation on lemma 3.1.1
mentioned above and an integration by parts trick.

4 Applications

4.1 Fermat principle

Light rays follows paths γ which minimize (or make stationary) the time T =
∫

γ
1
cds, where

ds = ‖γ̇(t)‖dt is the element of arclength along γ and c is the speed of light, which may depend
on position.

4.2 Geodesics

A (smooth) Riemannian metric on an open subset U ⊂ R
n is a (smooth) function x 7→ gij(x)

from U into the space of real positive symmetric n × n matrices. The geodesics are C2 curves
which are stationary points for the length functional l[x] =

∫

(gij ẋiẋj)
1
2 dt, (where summation

convention is understood.) They solve the equation

d

dt

( gij ẋj√
glmẋlẋm

)

− 1

2

∂gjk

∂xi

ẋj ẋk√
glmẋlẋm

= 0.

Since the length functional is parametrization invariant, it is possible to choose the parameter t
to be the arclength so that gij ẋiẋj = 1, in which case the equation simplifies to

d

dt

(

gij ẋj

)

− 1

2

∂gjk

∂xi
ẋj ẋk = 0.

This equation is the Euler-Lagrange equation associated to the “kinetic energy integral” I[x] =
∫

gij ẋiẋj dt, so that an alternative definition of geodesic is a C2 curve for which I is stationary-
this definition automatically gives geodesics with a parametrization for which gij ẋiẋj = constant,
by the second conservation law (Noether theorem).

4.3 Lagrangian and Hamiltonian mechanics

The equation
mẍ + ∇V = 0 (4.1)

for a particle of mass m > 0 moving in a potential V (x) can be derived as the Euler-Lagrangian
associated to the action functional S[x] =

∫

L(x, ẋ)dt, where L(x, ẋ) = 1
2m‖ẋ‖2 − V (x) is

called the Lagrangian. This is the Lagrangian formulation of Newtonian mechanics. Since L is
convex in ẋ the Legendre transformation in the velocity variables gives a function H(x,p) =
supẋ (p · ẋ − L(x, ẋ)) from which L can be recovered just by applying the Legendre transform
again. The function H is the Hamiltonian, and gives an equivalent formulation of (4.1) in
Hamiltonian form :

ẋj =
∂H

∂pj
, ṗj = −∂H

∂xj

Convexity of the Lagrangian in the velocity variables ensures the possibility of going back and
forth between the two formulations. Notice that the supremum in the definition of H is attained
at the unique ẋ given by p = mẋ: this defines the conjugate momentum.

4
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5 The second variation

Consider the functional I[y] =
∫ b

a
f(x, y, y′)dx on the space V of C1 functions with y(a) = α and

y(b) = β. Let V0 be the vector space of C1 functions with y(a) = 0 and y(b) = 0.

Definition 5.0.1 A function y ∈ V is a weak local minimizer for I if I[y + φ] ≥ I[y] for all
φ ∈ V0 with ‖φ‖C1 = max[a,b] |φ(x)|+ max[a,b] |φ′(x)| sufficiently small. If the inequality is strict
for such φ not identically zero, the minimum is strict. There is a corresponding definition for
weak maximum.

(There is also a corresponding notion of strong minimizer for I with the norm ‖φ‖C0 = max[a,b] |φ(x)|
used instead of ‖φ‖C1 , see Chapter 6 in Gelfand and Fomin.)

Assuming, as always, that f is smooth, Taylor’s theorm implies that ∀ǫ > 0∃δ(ǫ) > 0 such
that for all x ∈ [a, b] and ‖φ‖C1 < δ:

|f(x, y + φ, y′ + φ′) − f(x, y, y′) − φfy(x, y, y′) − φ′fy′(x, y, y′) − Q| < ǫ(|φ|2 + |φ′|2)

where Q is the quadratic part of the Taylor expansion

Q =
1

2

(

φ2fyy(x, y, y′) + 2φφ′fyy′(x, y, y′) + φ′2fy′y′(x, y, y′)
)

.

Here φ, φ′ are evaluated with argument x. From this follows a corresponding Taylor expansion
for the functional I:

I[y + φ] = I[y] + DI[y](φ) +
1

2
D2I[y](φ) + R

where |R| < ǫ
∫ b

a
(|φ|2 + |φ′|2)dx for ‖φ‖C1 < δ(ǫ). The quadratic part

D2I[y](φ) =

∫

(

φ2fyy(x, y, y′) + 2φφ′fyy′(x, y, y′) + φ′2fy′y′(x, y, y′)
)

dx

is sometimes called the second variation, and denoted δ2I. From this we can read off:

Lemma 5.0.2 (Necessary conditions) If y ∈ V is a weak minimum then DI[y](φ) = 0∀φ ∈
V0 and the second variation D2I[y](φ) ≥ 0∀φ ∈ V0.

Lemma 5.0.3 (Sufficient conditions) Assume y ∈ V is such that DI[y](φ) = 0∀φ ∈ V0 and
the second variation satisfies, for some c > 0,

D2I[y](φ) ≥ c

∫ b

a

(|φ|2 + |φ′|2)dx ∀φ ∈ V0. (5.2)

Then y is a weak local minimum.

Recall that if y is C2 it solves the Euler-Lagrange equation if DI[y](φ) = 0∀φ ∈ V0. The fact
that φ(a) = 0 = φ(b) means that in this case the formula for the second variation can be put
into Sturm-Liouville form:

D2I[y](φ) =

∫ b

a

(

p(x)φ′2 + q(x)φ2
)

dx

where p(x) = fy′y′(x, y(x), y′(x)) and q(x) = fyy(x, y(x), y′(x)) − d
dx (fyy′(x, y(x), y′(x)). One

explicit approach to determining whether (5.2) holds for some c > 0 is to calculate the eigenvalues
of the Sturm-Liouville operator L = −(pφ′)′+qφ. There are also general conditions which ensure
(5.2): it is sufficient that p(x) > 0 on [a, b] and that there are no conjugate points, i.e. there are no
points ã ∈ (a, b] such that there is a non-trivial function h such that Lh = 0 and h(a) = 0 = h(ã).
This is proved in theorem 1 in section 26 of Gelfand and Fomin.

5
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6 Example sheet 1

1. Prove that if f ∈ C1(R) has only one stationary point which is a local minimum, then it
must be a global minimum. Give a counter-example to show this is false in R

2.
2. * Prove that a real symmetric matrix Aij is > 0, in the sense defined in §2.2, iff all its

eigenvalues are positive.
3. * Prove, using the Bolzano-Weierstrass property, but without using diagonalizability, that

if a real symmetric matrix Aij > 0 then
∑

ij Aijvivj ≥ c‖v‖2 for some c > 0. (After

analysis II).
4. * Let f ∈ C2(R2) have a stationary point x = (x1, x2) and let Aij = ∂2

ijf(x). Show that

A11 + A22 > 0 and A11A22 − A2
12 > 0 implies Aij > 0 so that x is a strict local minimum.

5. Given f : R
n → R define its epigraph to be Ef = {(x, z) : z ≥ f(x)} ⊂ R

n+1. Show that f
is a convex function iff Ef is convex subset.

6. Give an example of a function which is strictly convex but whose second derivative is not
everywhere > 0.

7. Show that x2/y is convex on the upper half plane (x, y) : y > 0. * Show that if f ∈ C2(R)
is convex then the function yf(y−1x) is convex on (x, y) : y > 0.

8. Given a family Lα(x) of affine functions indexed by α ∈ N, (or in fact an arbitrary index
set) show that f(x) = supα Lα(x) is convex. * Show that all C1 convex functions arise in
this way.

9. * With Lα as in the previous question, show that the function f(x) = infα Lα(x) is concave.
10. For A any real symmetric n × n matrix consider λ(A) = supv∈Rn:‖v‖=1 v · (Av). Use

Lagrange multipliers to show that λ(A) is the largest eigenvalue of A. * Also prove that λ
is a convex function of A. (Assume the fact from analysis II that a continuous function on
the sphere {v ∈ R

n : ‖v‖ = 1} attains its supremum.)
11. The area A of a triangle with sides a, b, c is given by

A =
√

[s(s − a)(s − b)(s − c)], where s = 1
2 (a + b + c).

(i) Show that of all triangles of given perimeter 2s, the triangle of largest area is equilateral.
(ii) Find (in terms of the perimeter) the largest possible area of a right-angled triangle of
given perimeter.

12. Prove that the Legendre transform of a function is always convex.
13. Find the Legendre transform of f(x) = ex, (giving its domain also). Find the Legendre

transform of f(x) = a−1xa, a > 1 defined on x > 0, and deduce xy ≤ a−1xa + b−1yb for
a−1 + b−1 = 1 (Young).

14. * Find the Legendre transform of f(x) = 1
2

∑

ij Aijxixj where Aij is a positive symmetric
matrix.

15. For an ideal gas, the internal energy U = U(S, V ) as a function of entropy and volume is

U = U0 + αnRT0

[

(V0

V

)
1
α e

S−S0
αnR − 1

]

for some constants U0, T0, V0, S0, α, n,R. Calculate the pressure and temperature (defined
by dU = TdS − pdV ), and verify that pV = nRT (ideal gas equation of state). Calculate
also the constant volume heat capacity CV = T ∂S

∂T |V , and comment on the convexity
of U as a function of S. Calculate the Helmholtz free energy F = F (T, V ) defined by
F (T, V ) = minS(U(S, V ) − TS). [In this formula T is a fixed number - do not substitute
for T from the formula you derived in the first part of the question!]

16. * For black body radiation the internal energy U = U(S, V ) as a function of entropy and
volume is

U(S, V ) =
(3S

4

)
4
3
( 1

CV

)
1
3

where C is a constant. Calculate P, T as in the previous question and verify that the energy
density (i.e. the internal energy per unit volume) is CT 4 and that the value of the pressure
is 1

3 of the energy density. Calculate the Helmholtz free energy F = F (T, V ) defined by

F (T, V ) = minS(U(S, V ) − TS), and show that its value is −1
3U .

6



C
op

yr
ig

ht
 ©

 2
01

2 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

17. Show that the Euler-Lagrange equation of the functional

I[y] =

∫ x2

x1

f(y, y′)dx = 0, y(x1) = y1 and y(x2) = y2 fixed

has the first integral f(y, y′)− y′ ∂
∂y′

f(y, y′) = constant. The curve assumed by a uniform

cable which is suspended between two points (−a, b) and (a, b) minimises the potential
energy

∫ a

−a

y(1 + y′2)1/2dx

subject to the constraint that its length remains fixed,
∫ a

−a

(1 + y′2)1/2dx = 2L,

where L > a. Using the Lagrange multiplier method, show that the curve is a catenary

y − y0 = c cosh

(

x − x0

c

)

,

where c, x0 and y0 are constants. * Find an equation for c, and show that it has a unique
positive solution.

18. Write down the Euler-Lagrange equation for the functional

I[u] =

∫ +∞

−∞

1

2
u′2 + (1 − cos u)dx

and find all solutions which satisfy limx→−∞ u(x) = 0 and limx→+∞ u(x) = 2π.
Show that if u ∈ C1(R) satisfies limx→−∞ u(x) = 0 and limx→+∞ u(x) = 2π

I[u] =
1

2

∫ +∞

−∞
(u′ − 2 sin

u

2
)2 dx + 8.

Deduce that a lower bound for I[u] amongst such functions is 8, and give a first order
differential equation which u must satisfy in order to realize this lower bound. Show that
any solution of this first order equation solves the Euler-Lagrange equation you derived in
the first part of the question. Give all the functions satisfying I[u] = 8.

19. * The brachistochrone problem leads to the study of the functional I[y] =
∫ X

0

√
(1+y′2)√

y dx

for C1 curves y = y(x) > 0 such that y(0) = 0 and y(X) = Y > 0. Make the change

of variables y = φ2, and show that J [φ] = I[φ2] =
∫ X

0
(φ−2 + 4φ′2)

1
2 dx. Show that the

function l(u, v) = (u−2 + 4v2)
1
2 is strictly convex on {(u, v) : u > 0} ∈ R

2. (This can be
used to prove the cycloid solution which we obtained as a solution of the Euler-Lagrange
equation, which is only a necessary condition for a minimizer, actually does minimze I.)
Write down the Euler-Lagrange equation for J [φ], solve for φ and show that the solutions
are cycloids, as for the Euler-Lgrange equation for I.

20. Obtain the Euler-Lagrange equation for the function x(t) that makes stationary the integral

∫ t2

t1

f(t, x(t), ẋ(t), ẍ(t))dt

for fixed values of both x(t) and ẋ(t) at both t = t1 and t = t2.
Find the function x(t) with x(1) = 1, ẋ(1) = −2, x(2) = 1

4 and ẋ(2) = −1
4 , that minimises

∫ 2

1
t4[ẍ(t)]2dt, including a demonstration that it is a minimizer (not just a stationary point)

for the integral.

7
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7 Example sheet 2

1. Consider the problem of maximizing the area 1
2

∫ 2π

0
(xẏ − yẋ)dt enclosed by a closed curve

of fixed length l =
∫ 2π

0
(ẋ2 + ẏ2)

1
2 dt. Write down and solve the Euler-Lagrange equations

for this constrained problem in parametric form.

2. Consider the problem of minimizing I[ψ] =
∫ +∞
−∞

(

ψ′2 + x2ψ2
)

dx amongst functions with
∫

ψ2dx = 1.
(i) Write down the corresponding Euler-Lagrange equation for this constrained problem.
(ii) Show that under the assumption xψ(x)2 → 0 as x → +∞ it is possible to write

I[ψ] = 1 +
∫ +∞
−∞ (ψ′ + xψ)2dx, and hence show that amongst such functions the minimum

value of I is 1 and is attained on a function which should be given explicitly. Verify that this
function satisfies the Euler-Lagrange equation you wrote down in (i), for an appropriate
value of the Lagrange multiplier.
(iii) * Use the method of power series solutions to solve the Euler-Lagrange equation in (i),
and comment on the relation with the minimizing function you obtained in (ii). (Here you

may find it useful to rewrite the Euler-Lagrange equation as an equation for f = e
x2

2 ψ(x)).
3. Obtain the Euler-Lagrange equations associated to the functionals

(i) I[u] =
∫

( 1
2u2

t − F (ux))dxdt,

(ii) * I[u] = 1
2

∫

(u2
t − c(u)2u2

x)dxdt,

where u = u(t, x) is a function on R
2, where F and c are given smooth functions.

4. Obtain the Euler-Lagrange equations associated to the functionals
(i) I[u] =

∫

(|∇u|2 + e2u)dxdy,

where u = u(x, y) is a function on R
2, and

(ii) * I[u] =
∫

(det Du)dxdy,

where u : R
2 → R

2, and det Du means the Jacobian determinant. What is unusual about
the second example?

5. Consider I[y] =
∫ +1

−1
(xy′)2dx for y(x) in the set S of C1 functions such that y(1) = 1 and

y(−1) = −1. By considering yǫ(x) = arctan x/ǫ
arctan 1/ǫ show that infy∈S I[y] = 0. Show that this

infimum is not attained in S.
6. Consider I[y] =

∫ 1

−1
(1− y2

x)2dx with y = y(x) lying in the set S′ of piecewise C1 functions

such that y(±1) = 1. By considering y(x) = |x| show that the miny∈S′ I[y] = 0. Does there
exist a C1 (not just piecewise C1) function for which this value is attained?

7. The smooth functions p(x), q(x) and w(x) ≥ 0 are prescribed on [a, b], with w not identically
zero. Show that the following three conditions are equivalent for C2 functions y(x) satisfying
y(a) = 0 = y(b):
(i) y satisfies: (py′)′ − qy = −λwy;

(ii) I[u] =
∫ b

a
(pu′2 + qu2)dx is stationary at u = y amongst C1 functions satisfying the

boundary conditions and subject to the constraint
∫ b

a
wu2dx = constant;

(iii) Q[u] =
∫ b

a
(pu′2 + qu2)dx/

∫ b

a
wu2dx, is stationary amongst C1 functions satisfying the

boundary conditions at u = y. What is the value of Q[y]?
(Assume that y is not identically zero, and that w > 0 in (a, b) so that so that the denom-

inator
∫ b

a
wy2dx in (iii) is non-zero.)

8. Let x(t) ∈ R
3 be a curve which is constrained to lie on the sphere S2 = {x : ‖x‖ = 1}. Use

the Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation

ẍ + ‖ẋ‖2x = 0 (7.3)

for the problem of minimizing I[x] =
∫

‖ẋ‖2dt amongst curves satisfying the constraint
x(t) ∈ S2. Show that the solutions of the Euler-Lagrange equation lie on a plane through
the origin (they are great circles.)

9. * As an alternative approach to (7.3), let θ, φ be standard angles given by spherical coor-
dinates, and assume the curve on S2 is given as φ = φ(θ). Show that the length integral

8
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is l[φ] =
∫

(1 + sin2 θφ′2)
1
2 dθ. Obtain the Euler-Lagrange equation associated to this func-

tional, integrate it and show that the resulting solutions are great circles.
10. * Obtain (7.3) by considering variations of the curve x(t) of the form

xǫ(t) ≡ x(t) + ǫz(t)

‖x(t) + ǫz(t)‖

which lie on S2 and requiring d
dǫI[xǫ] = 0 at ǫ = 0 for every smooth z(t).

11. * For the brachistochrone problem, show that the minimum travel time between two points
at the same level and a distance l apart is (2πl/g)1/2 (for a bead moving on a wire under
the action of gravity without friction. The acceleration due to gravity is g.)

12. * For the brachistochrone problem, show that there is a unique arc of a cycloid (without a
cusp) from the starting point (0, 0) to a point (X,Y ) below the starting point.

13. In an optical medium filling the region 0 < y < h, the speed of light is

c(y) =
c0

(1 − ky)1/2
(0 < k < 1/h).

Show that the paths of light rays in the medium are parabolic. Show also that, if a ray
enters the medium at (−x0, 0) and leaves it at (x0, 0), then

(kx0)
2 = 4ky0(1 − ky0),

where y0 (< h) is the greatest value of y attained on the ray path.
14. * Hamilton’s Principle is applicable also to the relativistic dynamics of a charged particle

in an electromagnetic field. The appropriate choice of Lagrangian L[t,x(t), ẋ(t)] is

L = −m0c
2γ−1 + qA0 + qv · A,

with the Lorentz factor γ = (1−v2/c2)−1/2, and where x is the position and v = ẋ(t) is the
velocity of a particle of rest-mass m0 and charge q in fields determined by a given scalar
potential A0(x, t) and a given vector potential A(x, t). Verify that the Euler-Lagrange
equations, with this choice of L, yield the equation of motion

d

dt
(m0γv) = q(E + v × B),

where the electric field E = ∇A0 − ∂A

∂t and the magnetic field B = ∇× A.
15. * With E and B as in the previous question, obtain the Euler-Lagrange equations associated

to the functional I[A] =
∫

(E2 − B2)dxdt. (This gives two of Maxwell’s equations).

16. For the length functional for curves in the plane I[y] =
∫ b

a
(1 + y′2)

1
2 dx, with y(a) = α and

y(b) = β show that the straight line y = y0(x) joining (a, α) to (b, β) solves the Euler-
Lagrange equation. Compute the second variation of I at y0 and show that it is positive.

17. For I[y] =
∫ b

a
(y′2 + y4)dx with y(a) = α, y(b) = β find the Euler-Lagrange equation and

the second variation. For the case α = 0 = β write down the solution of the Euler-Lagrange
equation and the second variation explicitly, and show that the second variation is strictly
positive.

18. For I[y] =
∫ 1

0

(

1
2y′2 + F (y)

)

dx with y(0) = 0 = y(1). Assume that F ∈ C2(R) satisfies

F ′(0) = 0. Write down the associated Euler-Lagrange equation, and show that y0(x) = 0
is a solution. Find the second variation. Give (i) a condition on F ′′(0) which ensures that
the second variation is positive, and (ii) a condition which ensures the second variation has
at least one negative eigenvalue.

9
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8 Additional questions

1. The following questions from recent methods exams are good for practice with Lagrange
multipliers, Euler-Lagrange equations etc: 2008 1/II/14D and 2/I/5D, 2007: 3/I/6E and
4/II/16E, 2006: 2/I/5A and 4/II/16B.

2. At how many points in R3 does the function

φ(x1, x2, x3) = 1
4 (x4

1 + x4
2 + x4

3) − x2x3 − x3x1 − x1x2

take its minimum value? Show that this least value is −3. Show also that φ has one
saddle point, at which the surface of vanishing φ is tangent to a double cone of semi-angle
tan−1(

√
2).

3. Find the maximum volume of a rectangular parallelopiped inscribed inside an ellipsoid
x2/a2 + y2/b2 + z2/c2 = 1.

4. *Show that if f : (a, b) → R is convex the one-sided difference quotients φx(h) = h−1(f(x+
h)−f(x)), h > 0 are non-decreasing i.e. φx(h) ≤ φx(k) if 0 < h ≤ k. Deduce that the right
derivative D+f(x) ≡ limh→0+,h>0 φx(h) exists in −∞∪R. By considering φx−l(l) for l > 0
show that for any x ∈ R the φx(h) are bounded below for h > 0 so that the right derivative
D+f(x) just defined is finite for all x for a convex function with domain R like f . Show
that if the domain of f is only an interval that the same is true for x an interior point of
the interval. Give an example of a convex function defined only on [0,∞) for which the
right derivative at x = 0 is −∞.

5. *Consider I[y] =
∫ b

a
f(x, y, y′)dx with y(a) = α, y(b) = β, where f is a smooth function

f : R
3 → R. Consider variations of the form yǫ(x) = y(x + ǫφ(x)) where φ ∈ C∞

0 (a, b),
and compute d

dǫI[yǫ]|ǫ=0; show that if y is such that this is zero for all such φ then the
conservation law y′fy′ − f = constant holds.

6. Consider the area of a surface obtained by rotating a curve y = y(x) with y(a) = α and
y(b) = β about the y-axis. Write down an integral for the area, and solve the associated
Euler-Lagrange equation.

7. Consider I[y] =
∫ b

a
f(x, y, y′)dx with y(a) = α but y(b) is not fixed. As usual f is a smooth

function f : R
3 → R. Show that if y ∈ C2 minimizes I amongst C1 functions with y(a) = α

then as well as the Euler-Lagrange eqyation it satisfies the additional boundary condition
fy′(b, y(b), y′(b)) = 0. Together with the initial condition this gives the correct number of
boundary conditions for the second order Euler-Lagrange equation. Boundary conditions
which are a consequence of a variational problem in this way are called natural. What is
the natural boundary condition for I[u] =

∫

B

(

1
2 |∇u|2 − gu

)

dx where B is the unit ball in
R

n?
8. Find the Hamiltonian obtained via the Legendre transformation from the Lagrangian L =

1
2gij ẋiẋj − V (x) (summation convention assumed).

9. Find the Hamiltonian for the relativistic dynamics of a charged particle by applying the
Legendre transformation to the Lagrangian L = −m0c

2γ−1 − qA0 − qv ·A, which appears
in sheet II.

10. Write down the Euler-Lagrange equation associated to I[u] =
∫ +∞
−∞

1
2u′2 +(1−cos u)dx and

show that u(x) = 4 arctan ex is a solution with boundary conditions limx→−∞ u(x) = 0 and
limx→+∞ u(x) = 2π. (i) Calculate the second variation, and (ii)* use the method of power
series to find the eigenvalues of the associated Sturm-Liouville operator.

11. (i) Consider the functional I[u] =
∫ +π

−π

(u2
x

2 − fu
)

dx where u and f are real 2π- periodic

functions with zero mean:
∫ +π

−π
u(x)dx = 0 =

∫ +π

−π
f(x)dx. Write down the Euler-Lagrange

equation.
(ii) Now consider the case that u, f are given by finite sums of exponentials:

u(x) =
∑

0<|n|≤N

uneinx, f(x) =
∑

0<|n|≤N

fneinx

with the reality conditions ūn = u−n, f̄n = f−n and N any positive integer. Show that

10
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I[u] = 2πJN [u] where u = (u1, u2, . . . un) ∈ C
N and

JN [u] =
N

∑

n=1

n2|un|2 − f̄nun − fnūn

Use completion of the square to show that the minimum of JN is attained for some unique
u, and show that the corresponding function u solves the Euler-Lagrange equation in (i).
(iii)* Use the direct method to prove the existence of a minimizer for JN as follows. First
show that JN is bounded below, and let {uα}∞α=1 be a sequence such that JN [uα] →
inf

v∈C
N JN [v] as α → ∞. Show that there is a subsequence which converges to a limit

point u which is a minimizer , i.e. JN [u] = inf
v∈C

N JN [v]. Finally, deduce by considering

the stationary condition satisfied by minimizers for JN , that this minimizer is the same as
the one you obtained in (ii).
(iv)* [After Methods and Analysis II] Extend your argument in (iii) to the case N = +∞
and show that amongst sequences such that

∑∞
n=1 n2|un|2 < ∞ there is one that minimizes

J∞. Work under the assumption that f is given by an absolutely convergent Fourier series.
(Hint: look up Cantor diagonalization.)
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