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Variational principles: summary and problems

David Stuart

dmas2@cam.ac.uk

1 Introduction

Below is an expanded version of parts of the syllabus, intended to fix notation and terminology
for doing the problems. It is not a complete summary. For learning all the material some
combination of the lectures and the books

Perfect Form, by Lemons (PUP), general

Calculus of Variations, by Gelfand and Fomin (Dover) for calculus of variations

e Variational principles in dynamics and quantum theory, by Yourgrau and Mandelstam
(Dover) for applications

e Convex optimization, Chapter 3, Boyd S., Vandneberghe L.(CUP) for convexity

should be used. (The last three books give much more detailed treatments than possible/necessary
for this course.) The problems are at the end, starred problems being more difficult and not in-
tended for supervision. Please send errors and corrections to the email address above.

2 Variational problems for functions on r"

R™ is the the vector space with typical element {x = """ | z;€;} where e; = (1,0,...,0) etc.

2.1 Differentiability and first order conditions

If a function f : R™ — R has partial derivatives 9;f(x) = lim;_ ot~ 1(f(x + te;) — f(x)) which
exist and are continuous on R", it is a C'(R") function, and is differentiable at every x in the
sense that f(x+h) — f(x) — Vf(x) - h = o(||h]|) as h — 0. This means it can be approximated
linearly, and the derivative is the linear map on R™ given by Df(x)(h) = Vf(x) - h, which is
linear in h.

Lemma 2.1.1 (First order necessary condition) A local minimum (or mazimum) of a C*
function is a stationary point, i.e. the derivative vanishes there.

2.2 Second order conditions

If the partial derivatives up to order r € N exist and are continuous the function lies in C"(R").
2
Write the second order partial derivatives 97 f = % For a C? function f(x +h) — f(x) —
iOT;
V(%) h =335, 0% f(x)hih; = o(|h]*) as h — 0.
A real symmetric matrix is positive (resp. non-negative) if >, A;jviv; > 0 (resp. > 0) for
all non-zero vectors v, or equivalently if all its eigenvalues are positive (resp. non-negative).

Lemma 2.2.1 (Second order necessary conditions) If a stationary pointx of a f € C*(R")
is a local mazimum (resp. minimum) then 97, f(x) is a non-positive (resp. non-negative) sym-
metric matrix.
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Lemma 2.2.2 (Second order sufficient conditions) If f € C*(R") and Df(x) = 0 and
9%, f(x) is a positive (resp. negative) symmetric matriz then X is a strict local minimum (resp.
mazimum).

2.3 Convexity

A subset S C R" is convex if for any x,y in S and any ¢ € [0,1] the point (1 —t)x+ty € S. A
function f : R" — R is convez if f((1 —t)x+ty) < (1 —1t)f(x)+¢f(y) for any x,y in R" and
any t € [0, 1] (or more generally it is convex on a convex subset S if this inequality holds for any
x,y in S and any ¢ € [0,1].) Further f is called strictly convex if the above inequality is strict
whenever it can be i.e. for 0 < t < 1 and x # y. Affine functions, i.e. functions of the form
f(x) = a+Db-x, are examples of functions which are convex but not strictly convex.

Lemma 2.3.1 (Convexity: first order conditions) f € CY(R") conver <=  f(y) >
f)+ Vi) - (y =x) fordlx,y <= (Vf(x)=Vf(y)) (x=y) =0, for all x,y.

As a corollary, this implies that if x is a stationary point of a convex C' function then it is a
global minimum.
Also this shows that C'! convex functions lie above their tangent planes.

Lemma 2.3.2 (Strict convexity: first order conditions) f € C1(R") strictly conver <=
fly) > f(x)+Vfix)- (y—x) foralx#y, < (Vf(x)—Vf(y)) (x—y)>0 forallx#y.

As a corollary, this implies that if f € C1(R") is strictly convex, the equation Vf(x) = b can
have no more than one solution. In particular, stationary points for strictly convex functions are
unique.

Lemma 2.3.3 (Convexity: necessary and sufficient second order condition) f ¢ C?(R")
is conver <= 02 f;;(x) > 0 Vx.

Lemma 2.3.4 (Strict convexity: sufficient second order condition) f € C?(R") is strictly
convez if 02 f;j(x) > 0 Vx.

2.4 Lagrange multipliers

Consider a hypersurface C = {x € R" : g(x) = 0} where g € C*(R") satisfies Vg(x) # 0 for all
x. The vector n(x) = Vg(x)/||Vg(x)|| is everywhere normal to C.

Lemma 2.4.1 Let f € C*(R"™). Then if f|c has a mazimum (resp. minimum) at x € C then

there exists A € R such that Vh(x,\) = 0 where h(x,\) = f(x) — Ag(x), and furthermore
> i 0%hij(x, \)v;v; is <0 (resp. >0) for all vectors v such that v -n = 0.

The function h is the Lagrange augmented function. The number ) is called the Lagrange
multiplier.

For problems with several constraints {g, }.,_,, assume they are independent (in the sense that
the matrix ;g4 (x) has rank [) and consider h(x,\) = f(x) — > A\nga (%), and the corresponding
result holds.

2.5 Legendre Transform

Given f : R™ — R its Legendre transform g = f* is given by g(p) = sup(p - x — f(x)), defined
only for p such that this supremum is finite. The Legendre transform is automatically convex,
and the generalized Young inequality

f(x)+g(p) >p-x

follows immediately from the definition of g = f*. The inequality zy < a~'2z® + b~ 'y" for
a”'+b7! =1 and a > 1 is a well-known special case (see exercises).
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Theorem 2.5.1 If f is convex f** = f.

This implies that a convex functions can always be expressed as a supremum of a family of affine
functions. This fact also follows from lemma 2.3.1 - just take the family of affine functions to be
those lying below the graph of f, and show that this family is non-empty (since it contains the
tangent planes) and the supremum gives back f.

3 Variational problems for functionals

3.1 Generalities on functionals

Terminology: C§°(a,b) is the space of smooth functions whose support is a closed bounded subset
of the interval (a,b). The support of a function is the closure of the set where it is non-zero.
A bump function in an interval (zg — €, ¢ + €) is a function b € C§°(R) which is positive in
(xo —€,20+€) and vanishes for |z — x| > 0. These can be constructed by translating and scaling

-1
the bump function on the interval (—1,1) given by e@—+5% for 22 < 1 and extended with value

zero outside the interval (exercise).

A functional is just a function on a set of functions. Since spaces of funtions can be topologized
in many inequivalent ways, the continuity and differentiability of functionals is more subtle. For
example the Dirac functional do(¢) = ¢(0) is continuous on C'(R) with the topology determined
by the supremum (L*°) norm ||¢| e~ = max |¢(x)|, but not with respect to that determined by
the L? norm (defined by [|¢||2. = [ |¢(x)|?dz). In contrast all norms on finite dimensional vector
spaces define equivalent topologies. For this reason we will study differentiability of functionals
only one direction at a time, i.e. will consider directional derivatives. The following lemma is
useful:

Lemma 3.1.1 Let g € C([a,b]) have the property that f;g(x)tﬁ(x)dx =0 for all ¢ € C§°(a,b).
Then g vanishes identically throughout the interval.

Proof This follows using continuity and bump functions (exercise).

A slight variation on this lemma states that if f; g(x)¢' (x)dx = 0 for all ¢ € C§°(a,b) (notice
the prime on ¢) then g is a constant.

3.2 Directional derivatives of functionals

Let f : R* — R be smooth and consider the functional I[y] = ff f(z,y,y')dz as a function

on the space V of C! functions with y(a) = a and y(b) = B. Assume I[y] = min,ey I[w]
then the function i(e) = Iy + e¢] has a minimum at e = 0 for all ¢ € C{°(a,b), so that

i'(0) = DIyl(¢) = f:(fy(b + f@')dx vanishes for each such ¢. The quantity DI[y](¢) is called

the directional derivative of the functional I along ¢. Assume further that y € C2(a,b), then
integration by parts gives, for ¢ € C§°(a,b):

b
DILG) = [ (=~ 5 () oo

and by lemma 3.1.1, we deduce that

ol d
5y = (fy - %(fy’)) =0

for y a C? minimizer. The quantity g—fl is sometimes known as the functional derivative, and
the mapping DI[y] : ¢ — DI[y](¢) is called the first variation, and sometimes written 6. The
equation

d
%(fv’) —fy=0
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is the Euler-Lagrange equation associated to I. In fact it holds in integrated form f,, — f; fy=

constant even for C! minimizers - this can be deduced using the variation on lemma 3.1.1
mentioned above and an integration by parts trick.

4 Applications

4.1 Fermat principle

Light rays follows paths v which minimize (or make stationary) the time T' = f7 %ds, where

ds = ||%(¢)||dt is the element of arclength along v and ¢ is the speed of light, which may depend
on position.

4.2 Geodesics

A (smooth) Riemannian metric on an open subset U C R" is a (smooth) function x — g;;(x)
from U into the space of real positive symmetric n x n matrices. The geodesics are C? curves

which are stationary points for the length functional I[x] = [ (gijj?ijjj)%dt, (where summation
convention is understood.) They solve the equation

=0.

i( Gij & )_lagjk LTy
dt \/glmil:tm 2 6.%'1 \/glmftli.rm

Since the length functional is parametrization invariant, it is possible to choose the parameter ¢
to be the arclength so that g;;4;2; = 1, in which case the equation simplifies to

i(”.‘)_lﬁgjk.‘. ~0
g \Jists 2 Oz; Ti%Thk =T

This equation is the Euler-Lagrange equation associated to the “kinetic energy integral” I[x] =
| gijiid;dt, so that an alternative definition of geodesic is a C? curve for which I is stationary-
this definition automatically gives geodesics with a parametrization for which g;;;&; = constant,
by the second conservation law (Noether theorem).

4.3 Lagrangian and Hamiltonian mechanics

The equation

mk + VV =0 (4.1)
for a particle of mass m > 0 moving in a potential V' (x) can be derived as the Euler-Lagrangian
associated to the action functional S[x] = [ L(x,%)dt, where L(x,%x) = m|%[*> — V(x) is

called the Lagrangian. This is the Lagrangian formulation of Newtonian mechanics. Since L is
convex in x the Legendre transformation in the velocity variables gives a function H(x,p) =
supy, (p - %X — L(x,%)) from which L can be recovered just by applying the Legendre transform
again. The function H is the Hamiltonian, and gives an equivalent formulation of (4.1) in

Hamiltonian form :
_O0H OH

T = —— T
J Gpj’ pj 8.Tj

Convexity of the Lagrangian in the velocity variables ensures the possibility of going back and
forth between the two formulations. Notice that the supremum in the definition of H is attained
at the unique x given by p = mx: this defines the conjugate momentum.
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5 The second variation

Consider the functional I[y] = f; f(x,y,y')dx on the space V of C* functions with y(a) = a and
y(b) = 3. Let Vj be the vector space of C* functions with y(a) = 0 and y(b) = 0.

Definition 5.0.1 A function y € V is a weak local minimizer for I if Ily + ¢] > I[y] for all
¢ € Vo with ||¢]|cr = max(, p) |¢(2)| + maxp, p) [¢' (x)| sufficiently small. If the inequality is strict
for such ¢ not identically zero, the minimum is strict. There is a corresponding definition for
weak maximum.

(There is also a corresponding notion of strong minimizer for I with the norm [|¢[|co = max(, ) |¢(7)|
used instead of ||¢||c1, see Chapter 6 in Gelfand and Fomin.)

Assuming, as always, that f is smooth, Taylor’s theorm implies that Ve > 03d(e) > 0 such
that for all z € [a,b] and ||@||c1 < ¢

‘f('ray + ¢’ y/ + QS/) - .f(x7y’y,) - ¢fy($7yvy/) - QS/fy/(l’,yvy/) - Q| < €(|¢|2 + |¢/|2)

where @ is the quadratic part of the Taylor expansion

1
Q= 3 (¢2fyy(xa Y, y/) + 2¢¢/fyy/(-73a Y, y/) + ¢)/2fy’y’ (z,y, y/))

Here ¢, ¢’ are evaluated with argument z. From this follows a corresponding Taylor expansion
for the functional I:

Ty + 6] = Il + DIY(9) + 3 D*1l5)(9) + R

where |R| < ef:(|¢|2 + |¢'|?)dx for ||¢||cr < §(€). The quadratic part

Dzl[y](¢) = /(¢2fyy (SC, ya y/) + 2¢¢/fyy’ (LE, y7 y/) + ¢/2fy’y’ (I7 y7 y,))dl'

is sometimes called the second variation, and denoted §2I. From this we can read off:

Lemma 5.0.2 (Necessary conditions) Ify € V is a weak minimum then DI[y](¢) = O0V¢ €
Vo and the second variation D*I[y](¢) > OV¢ € Vp.

Lemma 5.0.3 (Sufficient conditions) Assume y € V is such that DI[y](¢) = OV¢ € V, and
the second variation satisfies, for some ¢ > 0,

b

DIy)(6) > ¢ / (6[2 + |6/ )da Yo € Vi, (5.2)

a

Then y is a weak local minimum.

Recall that if y is C? it solves the Euler-Lagrange equation if DI[y](¢) = 0V¢ € Vy. The fact
that ¢(a) = 0 = ¢(b) means that in this case the formula for the second variation can be put
into Sturm-Liouville form:

b
DI[y)(¢) = / (p(2)¢" + q(2)?) dx

where p(x) = £, (¢, y(2),y' (@) and q(x) = f,,(@,9(2),y'(2)) — & (fyy (@, y(2).y'(@)). One
explicit approach to determining whether (5.2) holds for some ¢ > 0 is to calculate the eigenvalues
of the Sturm-Liouville operator L = —(p¢’)’ + g¢. There are also general conditions which ensure
(5.2): it is sufficient that p(x) > 0 on [a, b] and that there are no conjugate points, i.e. there are no
points @ € (a, b] such that there is a non-trivial function h such that Lh = 0 and h(a) = 0 = h(a).
This is proved in theorem 1 in section 26 of Gelfand and Fomin.
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11.

12.
13.

14.

15.

16.

Example sheet 1

. Prove that if f € C*(R) has only one stationary point which is a local minimum, then it

must be a global minimum. Give a counter-example to show this is false in R?.

* Prove that a real symmetric matrix A;; is > 0, in the sense defined in §2.2, iff all its
eigenvalues are positive.

* Prove, using the Bolzano-Weierstrass property, but without using diagonalizability, that
if a real symmetric matrix A;; > 0 then _,; Ajjvv; > cf[v|]? for some ¢ > 0. (After

analysis II).

* Let f € C?(R?) have a stationary point x = (z',2%) and let A4;; = 9%, f(x). Show that

Ajp + Agy > 0 and Ap; Ay — A2, > 0 implies A;i; > 0 so that x is a strict local minimum.
Given f : R" — R define its epigraph to be By = {(x,2) : z > f(x)} C R™!. Show that f
is a convex function iff E'¢ is convex subset.

Give an example of a function which is strictly convex but whose second derivative is not
everywhere > 0.

Show that x?/y is convex on the upper half plane (z,y) : y > 0. * Show that if f € C?(R)
is convex then the function yf(y~'x) is convex on (z,y) : y > 0.

Given a family L(x) of affine functions indexed by « € N, (or in fact an arbitrary index
set) show that f(x) = sup, L%(x) is convex. * Show that all C' convex functions arise in
this way.

* With }z/“ as in the previous question, show that the function f(x) = inf, L¥(x) is concave.

. For A any real symmetric n x n matrix consider A(A) = supyegn,|yj=1V - (Av). Use

Lagrange multipliers to show that A(A) is the largest eigenvalue of A. * Also prove that A
is a convex function of A. (Assume the fact from analysis IT that a continuous function on
the sphere {v € R" : ||v|| = 1} attains its supremum.)

The area A of a triangle with sides a, b, ¢ is given by

A=/[s(s—a)(s—b)(s —c)], wheres= fa+b+ec).

(i) Show that of all triangles of given perimeter 2s, the triangle of largest area is equilateral.
(ii) Find (in terms of the perimeter) the largest possible area of a right-angled triangle of
given perimeter.

Prove that the Legendre transform of a function is always convex.

Find the Legendre transform of f(xz) = e*, (giving its domain also). Find the Legendre
transform of f(x) = a~'2% a > 1 defined on # > 0, and deduce xy < a~'z® + b~1y® for
a~t+b71 =1 (Young).

* Find the Legendre transform of f(x) = % Zij A;jx;x; where A;; is a positive symmetric
matrix.

For an ideal gas, the internal energy U = U(S, V) as a function of entropy and volume is

U =Uy+ anRTj {(%)%e% — 1]

for some constants Uy, Ty, Vo, So, @, n, R. Calculate the pressure and temperature (defined
by dU = T'dS — pdV'), and verify that pV = nRT (ideal gas equation of state). Calculate
also the constant volume heat capacity Cy = Tg—f,h/, and comment on the convexity
of U as a function of S. Calculate the Helmholtz free energy F' = F(T,V) defined by
F(T,V) = ming(U(S,V) = TS). [In this formula T is a fized number - do not substitute
for T from the formula you derived in the first part of the question!]

* For black body radiation the internal energy U = U(S,V) as a function of entropy and

volume is .

vs:v)=(7) (ev)’

where C'is a constant. Calculate P, T as in the previous question and verify that the energy
density (i.e. the internal energy per unit volume) is CT* and that the value of the pressure

is % of the energy density. Calculate the Helmholtz free energy F = F(T,V) defined by

F(T,V) =ming(U(S,V) — T'S), and show that its value is —%U.
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17. Show that the Euler-Lagrange equation of the functional

18.

19.

20.

Ty = / Fyy)de =0, y(a1) =y and y(az) = ys fixed

has the first integral f(y,v') —y’ a?/ f(y,y") = constant. The curve assumed by a uniform

cable which is suspended between two points (—a,b) and (a,b) minimises the potential

energy
/ y(1 +y?) da

—a

subject to the constraint that its length remains fixed,
a
/ (14 y2)2dg = 2L,
—a

where L > a. Using the Lagrange multiplier method, show that the curve is a catenary

T—zx
Yy — Yo = ccosh < 0),
c

where ¢, zg and yg are constants. * Find an equation for ¢, and show that it has a unique
positive solution.
Write down the Euler-Lagrange equation for the functional

oo 1 2
Iu] = —u'* + (1 — cosu)dx
—o 2

and find all solutions which satisfy lim,_, o, u(z) = 0 and lim,_, . u(z) = 27.
Show that if u € C1(R) satisfies lim,_, o u(z) = 0 and lim,_, 1o u(z) = 27

1 [tee u
I[u]:—/ (u’—2sin§)2daj+8.

—00

Deduce that a lower bound for I[u] amongst such functions is 8, and give a first order
differential equation which u must satisfy in order to realize this lower bound. Show that
any solution of this first order equation solves the Euler-Lagrange equation you derived in
the first part of the question. Give all the functions satisfying I[u] = 8.

* The brachistochrone problem leads to the study of the functional I[y] = fOX —‘(l\;r_;/z)dx

for C! curves y = y(x) > 0 such that y(0) = 0 and y(X) =Y > 0. Make the éhange
of variables y = ¢2, and show that J[¢] = I[¢?] = fOX (¢=2 + 4¢*)2dx. Show that the

function I(u,v) = (u™2 + 4v?)2 is strictly convex on {(u,v) : u > 0} € R (This can be
used to prove the cycloid solution which we obtained as a solution of the Euler-Lagrange
equation, which is only a necessary condition for a minimizer, actually does minimze I.)
Write down the Euler-Lagrange equation for J[¢], solve for ¢ and show that the solutions
are cycloids, as for the Euler-Lgrange equation for I.

Obtain the Euler-Lagrange equation for the function z(t) that makes stationary the integral

ta
f(tx(t),4(t), 2(t))dt
t1
for fixed values of both x(t) and #(t) at both ¢ = ¢; and t = t5.
Find the function z(t) with (1) = 1,#(1) = —2,2(2) = { and @(2) = —1, that minimises
/ 12 t4[#(t))2dt, including a demonstration that it is a minimizer (not just a stationary point)
for the integral.
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Example sheet 2

. Consider the problem of maximizing the area % fozﬂ (zy — y2)dt enclosed by a closed curve

of fixed length [ = fo% (22 + 3}2)%dt. Write down and solve the FEuler-Lagrange equations
for this constrained problem in parametric form.

. Consider the problem of minimizing I[¢)] = _+§§ (v + 2?¢?)dz amongst functions with

[ ?de = 1.

(i) Write down the corresponding Euler-Lagrange equation for this constrained problem.
(ii) Show that under the assumption zi)(z)? — 0 as * — +oo it is possible to write
Iy =1+ fjof(z// + 20)%dx, and hence show that amongst such functions the minimum

value of I is 1 and is attained on a function which should be given explicitly. Verify that this
function satisfies the Euler-Lagrange equation you wrote down in (i), for an appropriate
value of the Lagrange multiplier.

(iii) * Use the method of power series solutions to solve the Euler-Lagrange equation in (i),
and comment on the relation with the minimizing function you obtained in (ii). (Here you

22
may find it useful to rewrite the Euler-Lagrange equation as an equation for f = ez ¢(x)).

. Obtain the Euler-Lagrange equations associated to the functionals

(i) I[u] = f(%u? — F(ug))dzdt,
(i) * ITu] = & [(uf — c(u)*u2)dzdt,

where u = u(t,z) is a function on R?, where F and ¢ are given smooth functions.

. Obtain the Euler-Lagrange equations associated to the functionals

(i) ITu] = [(|Vul* + e**)dzdy,

where u = u(z,y) is a function on R?, and

(ii) * Ifu) = [(det Du)dxdy,

where u : R* — R?, and det Du means the Jacobian determinant. What is unusual about
the second example?

. Consider I[y] = fjll(xy’)de for y(x) in the set S of C! functions such that y(1) = 1 and

y(—1) = —1. By considering y.(z) = %ﬁ??: show that inf,eg I[y] = 0. Show that this
infimum is not attained in S.

. Consider I[y] = f_11(1 —y2)2dx with y = y(z) lying in the set S’ of piecewise C'* functions

such that y(£1) = 1. By considering y(z) = |z| show that the min,egss I[y] = 0. Does there
exist a C! (not just piecewise C!) function for which this value is attained?

. The smooth functions p(z), ¢(z) and w(x) > 0 are prescribed on [a, b], with w not identically

zero. Show that the following three conditions are equivalent for C? functions y(x) satisfying
y(a) =0 = y(b):

(i) y satisfies: (py') — qy = —Awy;

(i) Ifu] = f:(pu’2 + qu?)dx is stationary at u = y amongst C' functions satisfying the
boundary conditions and subject to the constraint f: wu’dr = constant;

(iil) Q[u] = fab(pu’2 + qu?)dz/ fab wu?dz, is stationary amongst C'! functions satisfying the
boundary conditions at u = y. What is the value of Q[y]?

(Assume that y is not identically zero, and that w > 0 in (a, b) so that so that the denom-

inator fab wy?dzx in (iii) is non-zero.)

. Let x(t) € R? be a curve which is constrained to lie on the sphere $? = {x : ||x|| = 1}. Use

the Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation
%+ |%[Px =0 (7.3)

for the problem of minimizing I[x] = [ ||%||*d¢ amongst curves satisfying the constraint

x(t) € S%. Show that the solutions of the Euler-Lagrange equation lie on a plane through
the origin (they are great circles.)

. * As an alternative approach to (7.3), let 6, ¢ be standard angles given by spherical coor-

dinates, and assume the curve on S? is given as ¢ = ¢(#). Show that the length integral
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10.

11.

12.
13.

14.

15.

16.

17.

18.

is 1[¢] = [(1 + sin® 9¢/2)%d9. Obtain the Euler-Lagrange equation associated to this func-
tional, integrate it and show that the resulting solutions are great circles.
* Obtain (7.3) by considering variations of the curve x(t) of the form

() = X0+ ealt)
[1x() + ez(t)]]

which lie on $? and requiring 2 1[x] = 0 at e = 0 for every smooth z(%).

* For the brachistochrone problem, show that the minimum travel time between two points
at the same level and a distance [ apart is (271/g)'/? (for a bead moving on a wire under
the action of gravity without friction. The acceleration due to gravity is g.)

* For the brachistochrone problem, show that there is a unique arc of a cycloid (without a
cusp) from the starting point (0,0) to a point (X,Y’) below the starting point.

In an optical medium filling the region 0 < y < h, the speed of light is

co
= ———7= (0<k<1/h).
(1) = T /)
Show that the paths of light rays in the medium are parabolic. Show also that, if a ray
enters the medium at (—z,0) and leaves it at (x¢,0), then

(k$0)2 = 4]{3]/0(1 — kyo),

where yg (< h) is the greatest value of y attained on the ray path.
* Hamilton’s Principle is applicable also to the relativistic dynamics of a charged particle
in an electromagnetic field. The appropriate choice of Lagrangian L[t,x(t),%x(t)] is

L=—moc?*y " +qAg+qv-A,

with the Lorentz factor v = (1—v2/¢?)~1/2, and where x is the position and v = x(t) is the
velocity of a particle of rest-mass mgy and charge ¢ in fields determined by a given scalar
potential Ag(x,t) and a given vector potential A(x,t). Verify that the Euler-Lagrange
equations, with this choice of L, yield the equation of motion

d
E(mofyv) =q(E+v x B),

where the electric field E = VA, — % and the magnetic field B =V x A.
* With E and B as in the previous question, obtain the Euler-Lagrange equations associated

to the functional I[A] = [(E? — B?)dxdt. (This gives two of Maxwell’s equations).

For the length functional for curves in the plane I[y] = f:(l + y'?)2dx, with y(a) = o and
y(b) = [ show that the straight line y = yo(x) joining (a,«) to (b, 3) solves the Euler-
Lagrange equation. Compute the second variation of I at yg and show that it is positive.
For Iy] = f:(y’Q + y*)dx with y(a) = «, y(b) = 3 find the Euler-Lagrange equation and
the second variation. For the case a = 0 = 3 write down the solution of the Euler-Lagrange
equation and the second variation explicitly, and show that the second variation is strictly
positive.

For I[y] = fol (%y’2 + F(y))d:r with y(0) = 0 = y(1). Assume that F € C?(R) satisfies

F'(0) = 0. Write down the associated Euler-Lagrange equation, and show that yo(z) = 0
is a solution. Find the second variation. Give (i) a condition on F"(0) which ensures that
the second variation is positive, and (ii) a condition which ensures the second variation has
at least one negative eigenvalue.
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10.

11.

Additional questions

. The following questions from recent methods exams are good for practice with Lagrange

multipliers, Euler-Lagrange equations etc: 2008 1/II/14D and 2/1/5D, 2007: 3/I/6E and
4/T1/16E, 2006: 2/1/5A and 4/11/16B.

At how many points in R? does the function
d(x1, X0, x3) = %(JL‘% + x% + xé) — XoT3 — T3T1 — T1T2

take its minimum value? Show that this least value is —3. Show also that ¢ has one
saddle point, at which the surface of vanishing ¢ is tangent to a double cone of semi-angle
tan—1(1/2).

Find the maximum volume of a rectangular parallelopiped inscribed inside an ellipsoid
22 /a® +y? /b + 2%/ = 1.

. *Show that if f : (a,b) — R is convex the one-sided difference quotients ¢, (h) = h=(f(z+

h)— f(x)), h > 0 are non-decreasing i.e. ¢,(h) < ¢,(k)if 0 < h < k. Deduce that the right
derivative DY f(x) = limp 04+, 1r>0 ¢z () exists in —ooUR. By considering ¢,_;(1) for I > 0
show that for any x € R the ¢, (h) are bounded below for h > 0 so that the right derivative
D f(z) just defined is finite for all z for a convex function with domain R like f. Show
that if the domain of f is only an interval that the same is true for x an interior point of
the interval. Give an example of a convex function defined only on [0, 00) for which the
right derivative at x = 0 is —o0.

*Consider I[y] = fab flz,y,y)dx with y(a) = a,y(b) = B, where f is a smooth function
f:R® = R. Consider variations of the form y¢(z) = y(z + ep(z)) where ¢ € C5°(a,b),
and compute <-7[y]|c—o; show that if y is such that this is zero for all such ¢ then the
conservation law y' f,, — f = constant holds.

Consider the area of a surface obtained by rotating a curve y = y(z) with y(a) = o and
y(b) = B about the y-axis. Write down an integral for the area, and solve the associated
Euler-Lagrange equation.

Consider Ify] = fab f(z,y,y")dz with y(a) = a but y(b) is not fixed. As usual f is a smooth
function f : R* — R. Show that if 4 € C? minimizes I amongst C* functions with yla) =«
then as well as the Euler-Lagrange eqyation it satisfies the additional boundary condition
[y (b,y(b),y' (b)) = 0. Together with the initial condition this gives the correct number of
boundary conditions for the second order Euler-Lagrange equation. Boundary conditions
which are a consequence of a variational problem in this way are called natural. What is
the natural boundary condition for I[u] = [;(5|Vu|® — gu)dz where B is the unit ball in
R™?

Find the Hamiltonian obtained via the Legendre transformation from the Lagrangian L =
$9ij4:@; — V(x) (summation convention assumed).

Find the Hamiltonian for the relativistic dynamics of a charged particle by applying the

Legendre transformation to the Lagrangian L = —mgc?y~! — qAg — qv - A, which appears
in sheet II.
Write down the Euler-Lagrange equation associated to I[u] = [ j;o 142+ (1—cosu)dz and

show that u(z) = 4 arctan e® is a solution with boundary conditions lim,_,_ ., u(z) = 0 and
lim,_, 4 oo u(x) = 27. (i) Calculate the second variation, and (ii)* use the method of power
series to find the eigenvalues of the associated Sturm-Liouville operator.

(i) Consider the functional I[u] = fj:(% — fu) dx where u and f are real 27 periodic

functions with zero rnean:j::r u(z)dr =0 = fj: f(z)dz. Write down the Euler-Lagrange

equation.
(i1) Now consider the case that u, f are given by finite sums of exponentials:

u(x) — Z uneinw, f(.’L') — Z fneinw

0<|n|<N 0<|n|<N

with the reality conditions @, = u_n, fn = f—n, and N any positive integer. Show that

10
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I[u] = 27J[u] where u = (u1,uy, ... u,) € C and

N —
= Z?’LQ‘unF - fﬂun - fnan

n=1

Use completion of the square to show that the minimum of Jy is attained for some unique
u, and show that the corresponding function u solves the Euler-Lagrange equation in (i).
(111)* Use the direct method to prove the existence of a minimizer for Jy as follows. First
show that Jy is bounded below, and let {u®}32; be a sequence such that Jy[u®] —
infve(cN JIn[u] as a — oo. Show that there is a subsequence which converges to a limit

point u which is a minimizer , i.e. Jy[u] = inf _c~ Jn [v]. Finally, deduce by considering

the stationary condition satisfied by minimizers for Jy, that this minimizer is the same as
the one you obtained in (ii).

(iv)* [After Methods and Analysis II] Extend your argument in (iii) to the case N = 400
and show that amongst sequences such that Y~ |, n?|u,|? < co there is one that minimizes
Joo- Work under the assumption that f is given by an absolutely convergent Fourier series.
(Hmt look up Cantor diagonalization.)
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