Variational principles: summary and problems

David Stuart

dmas2@cam.ac.uk

1 Introduction

Below is an expanded version of parts of the syllabus, intended to fix notation and terminology for doing the problems. It is not a complete summary. For learning all the material some combination of the lectures and the books

- Perfect Form, by Lemons (PUP), general
- Calculus of Variations, by Gelfand and Fomin (Dover) for calculus of variations
- Variational principles in dynamics and quantum theory, by Yourgrau and Mandelstam (Dover) for applications
- Convex optimization, Chapter 3, Boyd S., Vandneberghe L.(CUP) for convexity

should be used. (The last three books give much more detailed treatments than possible/necessary for this course.) The problems are at the end, starred problems being more difficult and not intended for supervision. Please send errors and corrections to the email address above.

$\mathbf{2}$ Variational problems for functions on \mathbb{R}^n

 \mathbb{R}^n is the vector space with typical element $\{\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i\}$ where $\mathbf{e}_1 = (1, 0, \dots, 0)$ etc.

Differentiability and first order conditions 2.1

If a function $f: \mathbb{R}^n \to \mathbb{R}$ has partial derivatives $\partial_i f(\mathbf{x}) = \lim_{t \to 0} t^{-1} (f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x}))$ which exist and are *continuous* on \mathbb{R}^n , it is a $C^1(\mathbb{R}^n)$ function, and is differentiable at every **x** in the sense that $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{h} = o(||\mathbf{h}||)$ as $\mathbf{h} \to 0$. This means it can be approximated linearly, and the derivative is the linear map on \mathbb{R}^n given by $Df(\mathbf{x})(\mathbf{h}) = \nabla f(\mathbf{x}) \cdot \mathbf{h}$, which is linear in **h**.

Lemma 2.1.1 (First order necessary condition) A local minimum (or maximum) of a C^1 function is a stationary point, i.e. the derivative vanishes there.

2.2Second order conditions

If the partial derivatives up to order $r \in \mathbb{N}$ exist and are continuous the function lies in $C^r(\mathbb{R}^n)$. Write the second order partial derivatives $\partial_{ij}^2 f = \frac{\partial^2 f}{\partial x_i \partial x_j}$. For a C^2 function $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - f(\mathbf{x$ $\nabla f(\mathbf{x}) \cdot \mathbf{h} - \frac{1}{2} \sum_{ij} \partial_{ij}^2 f(\mathbf{x}) h_i h_j = o(\|\mathbf{h}\|^2) \text{ as } \mathbf{h} \to 0.$ A real symmetric matrix is positive (resp. non-negative) if $\sum_{ij} A_{ij} v_i v_j > 0$ (resp. ≥ 0) for

all non-zero vectors \mathbf{v} , or equivalently if all its eigenvalues are positive (resp. non-negative).

Lemma 2.2.1 (Second order necessary conditions) If a stationary point x of a $f \in C^2(\mathbb{R}^n)$ is a local maximum (resp. minimum) then $\partial_{ii}^2 f(\mathbf{x})$ is a non-positive (resp. non-negative) symmetric matrix.

Lemma 2.2.2 (Second order sufficient conditions) If $f \in C^2(\mathbb{R}^n)$ and $Df(\mathbf{x}) = 0$ and $\partial_{ij}^2 f(\mathbf{x})$ is a positive (resp. negative) symmetric matrix then \mathbf{x} is a strict local minimum (resp. maximum).

2.3 Convexity

A subset $S \subset \mathbb{R}^n$ is *convex* if for any \mathbf{x}, \mathbf{y} in S and any $t \in [0, 1]$ the point $(1 - t)\mathbf{x} + t\mathbf{y} \in S$. A function $f : \mathbb{R}^n \to \mathbb{R}$ is *convex* if $f((1 - t)\mathbf{x} + t\mathbf{y}) \leq (1 - t)f(\mathbf{x}) + tf(\mathbf{y})$ for any \mathbf{x}, \mathbf{y} in \mathbb{R}^n and any $t \in [0, 1]$ (or more generally it is convex on a convex subset S if this inequality holds for any \mathbf{x}, \mathbf{y} in S and any $t \in [0, 1]$.) Further f is called *strictly convex* if the above inequality is strict whenever it can be i.e. for 0 < t < 1 and $\mathbf{x} \neq \mathbf{y}$. Affine functions, i.e. functions of the form $f(\mathbf{x}) = a + \mathbf{b} \cdot \mathbf{x}$, are examples of functions which are convex but not strictly convex.

Lemma 2.3.1 (Convexity: first order conditions) $f \in C^1(\mathbb{R}^n)$ convex $\iff f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \iff (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})) \cdot (\mathbf{x} - \mathbf{y}) \geq 0$, for all \mathbf{x}, \mathbf{y} .

As a corollary, this implies that if \mathbf{x} is a stationary point of a convex C^1 function then it is a global minimum.

Also this shows that C^1 convex functions lie above their tangent planes.

Lemma 2.3.2 (Strict convexity: first order conditions) $f \in C^1(\mathbb{R}^n)$ strictly convex $\iff f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x})$ for all $\mathbf{x} \neq \mathbf{y}$, $\iff (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})) \cdot (\mathbf{x} - \mathbf{y}) > 0$ for all $\mathbf{x} \neq \mathbf{y}$.

As a corollary, this implies that if $f \in C^1(\mathbb{R}^n)$ is strictly convex, the equation $\nabla f(\mathbf{x}) = \mathbf{b}$ can have no more than one solution. In particular, stationary points for strictly convex functions are unique.

Lemma 2.3.3 (Convexity: necessary and sufficient second order condition) $f \in C^2(\mathbb{R}^n)$ is convex $\iff \partial^2 f_{ij}(\mathbf{x}) \ge 0 \ \forall \mathbf{x}.$

Lemma 2.3.4 (Strict convexity: sufficient second order condition) $f \in C^2(\mathbb{R}^n)$ is strictly convex if $\partial^2 f_{ij}(\mathbf{x}) > 0 \ \forall \mathbf{x}$.

2.4 Lagrange multipliers

Consider a hypersurface $C = \{ \mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) = 0 \}$ where $g \in C^2(\mathbb{R}^n)$ satisfies $\nabla g(\mathbf{x}) \neq 0$ for all \mathbf{x} . The vector $\mathbf{n}(\mathbf{x}) = \nabla g(\mathbf{x}) / \|\nabla g(\mathbf{x})\|$ is everywhere normal to C.

Lemma 2.4.1 Let $f \in C^2(\mathbb{R}^n)$. Then if $f|_{\mathcal{C}}$ has a maximum (resp. minimum) at $\mathbf{x} \in \mathcal{C}$ then there exists $\lambda \in \mathbb{R}$ such that $\nabla h(\mathbf{x}, \lambda) = 0$ where $h(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$, and furthermore $\sum_{ij} \partial^2 h_{ij}(\mathbf{x}, \lambda) v_i v_j$ is ≤ 0 (resp. ≥ 0) for all vectors \mathbf{v} such that $\mathbf{v} \cdot \mathbf{n} = 0$.

The function h is the Lagrange augmented function. The number λ is called the Lagrange multiplier.

For problems with several constraints $\{g_{\alpha}\}_{\alpha=1}^{l}$, assume they are independent (in the sense that the matrix $\partial_{i}g_{\alpha}(\mathbf{x})$ has rank l) and consider $h(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum \lambda_{\alpha}g_{\alpha}(\mathbf{x})$, and the corresponding result holds.

2.5 Legendre Transform

Given $f : \mathbb{R}^n \to \mathbb{R}$ its Legendre transform $g = f^*$ is given by $g(\mathbf{p}) = \sup(\mathbf{p} \cdot \mathbf{x} - f(\mathbf{x}))$, defined only for \mathbf{p} such that this supremum is finite. The Legendre transform is automatically convex, and the generalized Young inequality

$$f(\mathbf{x}) + g(\mathbf{p}) \ge \mathbf{p} \cdot \mathbf{x}$$

follows immediately from the definition of $g = f^*$. The inequality $xy \leq a^{-1}x^a + b^{-1}y^b$ for $a^{-1} + b^{-1} = 1$ and a > 1 is a well-known special case (see exercises).

Theorem 2.5.1 If f is convex $f^{**} = f$.

This implies that a convex functions can always be expressed as a supremum of a family of affine functions. This fact also follows from lemma 2.3.1 - just take the family of affine functions to be those lying below the graph of f, and show that this family is non-empty (since it contains the tangent planes) and the supremum gives back f.

3 Variational problems for functionals

3.1 Generalities on functionals

Terminology: $C_0^{\infty}(a, b)$ is the space of smooth functions whose support is a closed bounded subset of the interval (a, b). The support of a function is the closure of the set where it is non-zero. A bump function in an interval $(x_0 - \epsilon, x_0 + \epsilon)$ is a function $b \in C_0^{\infty}(\mathbb{R})$ which is positive in $(x_0 - \epsilon, x_0 + \epsilon)$ and vanishes for $|x - x_0| \ge 0$. These can be constructed by translating and scaling the bump function on the interval (-1, 1) given by $e^{\frac{-1}{(1-x^2)^2}}$ for $x^2 < 1$ and extended with value zero outside the interval (exercise).

A functional is just a function on a set of functions. Since spaces of functions can be topologized in many inequivalent ways, the continuity and differentiability of functionals is more subtle. For example the Dirac functional $\delta_0(\phi) = \phi(0)$ is continuous on $C(\mathbb{R})$ with the topology determined by the supremum (L^{∞}) norm $\|\phi\|_{L^{\infty}} = \max |\phi(x)|$, but not with respect to that determined by the L^2 norm (defined by $\|\phi\|_{L^2}^2 = \int |\phi(x)|^2 dx$). In contrast all norms on finite dimensional vector spaces define equivalent topologies. For this reason we will study differentiability of functionals only one direction at a time, i.e. will consider directional derivatives. The following lemma is useful:

Lemma 3.1.1 Let $g \in C([a,b])$ have the property that $\int_a^b g(x)\phi(x)dx = 0$ for all $\phi \in C_0^{\infty}(a,b)$. Then g vanishes identically throughout the interval.

Proof This follows using continuity and bump functions (exercise).

A slight variation on this lemma states that if $\int_a^b g(x)\phi'(x)dx = 0$ for all $\phi \in C_0^{\infty}(a,b)$ (notice the prime on ϕ) then g is a constant.

3.2 Directional derivatives of functionals

Let $f : \mathbb{R}^3 \to \mathbb{R}$ be smooth and consider the functional $I[y] = \int_a^b f(x, y, y') dx$ as a function on the space V of C^1 functions with $y(a) = \alpha$ and $y(b) = \beta$. Assume $I[y] = \min_{w \in V} I[w]$ then the function $i(\epsilon) = I[y + \epsilon \phi]$ has a minimum at $\epsilon = 0$ for all $\phi \in C_0^{\infty}(a, b)$, so that $i'(0) = DI[y](\phi) = \int_a^b (f_y \phi + f_{y'} \phi') dx$ vanishes for each such ϕ . The quantity $DI[y](\phi)$ is called the directional derivative of the functional I along ϕ . Assume further that $y \in C^2(a, b)$, then integration by parts gives, for $\phi \in C_0^{\infty}(a, b)$:

$$DI[y](\phi) = \int_{a}^{b} \left(f_{y} - \frac{d}{dx}(f_{y'}) \right) \phi dx$$

and by lemma 3.1.1, we deduce that

$$\frac{\delta I}{\delta y} = \left(f_y - \frac{d}{dx}(f_{y'})\right) = 0$$

for $y \in C^2$ minimizer. The quantity $\frac{\delta I}{\delta y}$ is sometimes known as the functional derivative, and the mapping $DI[y]: \phi \mapsto DI[y](\phi)$ is called the first variation, and sometimes written δI . The equation

$$\frac{d}{dx}(f_{y'}) - f_y = 0$$

is the Euler-Lagrange equation associated to I. In fact it holds in integrated form $f_{y'} - \int_a^x f_y = constant$ even for C^1 minimizers - this can be deduced using the variation on lemma 3.1.1 mentioned above and an integration by parts trick.

4 Applications

4.1 Fermat principle

Light rays follows paths γ which minimize (or make stationary) the time $T = \int_{\gamma} \frac{1}{c} ds$, where $ds = \|\dot{\gamma}(t)\| dt$ is the element of arclength along γ and c is the speed of light, which may depend on position.

4.2 Geodesics

A (smooth) Riemannian metric on an open subset $U \subset \mathbb{R}^n$ is a (smooth) function $\mathbf{x} \mapsto g_{ij}(\mathbf{x})$ from U into the space of real positive symmetric $n \times n$ matrices. The geodesics are C^2 curves which are stationary points for the length functional $l[\mathbf{x}] = \int (g_{ij}\dot{x}_i\dot{x}_j)^{\frac{1}{2}}dt$, (where summation convention is understood.) They solve the equation

$$\frac{d}{dt} \left(\frac{g_{ij} \dot{x}_j}{\sqrt{g_{lm} \dot{x}_l \dot{x}_m}} \right) - \frac{1}{2} \frac{\partial g_{jk}}{\partial x_i} \frac{\dot{x}_j \dot{x}_k}{\sqrt{g_{lm} \dot{x}_l \dot{x}_m}} = 0.$$

Since the length functional is parametrization invariant, it is possible to choose the parameter t to be the arclength so that $g_{ij}\dot{x}_i\dot{x}_j = 1$, in which case the equation simplifies to

$$\frac{d}{dt}\left(g_{ij}\dot{x}_j\right) - \frac{1}{2}\frac{\partial g_{jk}}{\partial x_i}\dot{x}_j\dot{x}_k = 0.$$

This equation is the Euler-Lagrange equation associated to the "kinetic energy integral" $I[\mathbf{x}] = \int g_{ij}\dot{x}_i\dot{x}_j dt$, so that an alternative definition of geodesic is a C^2 curve for which I is stationarythis definition automatically gives geodesics with a parametrization for which $g_{ij}\dot{x}_i\dot{x}_j = constant$, by the second conservation law (Noether theorem).

4.3 Lagrangian and Hamiltonian mechanics

The equation

$$m\ddot{\mathbf{x}} + \nabla V = 0 \tag{4.1}$$

for a particle of mass m > 0 moving in a potential $V(\mathbf{x})$ can be derived as the Euler-Lagrangian associated to the action functional $S[\mathbf{x}] = \int L(\mathbf{x}, \dot{\mathbf{x}}) dt$, where $L(\mathbf{x}, \dot{\mathbf{x}}) = \frac{1}{2}m||\dot{\mathbf{x}}||^2 - V(\mathbf{x})$ is called the Lagrangian. This is the *Lagrangian formulation* of Newtonian mechanics. Since L is convex in $\dot{\mathbf{x}}$ the Legendre transformation in the velocity variables gives a function $H(\mathbf{x}, \mathbf{p}) =$ $\sup_{\dot{\mathbf{x}}} (\mathbf{p} \cdot \dot{\mathbf{x}} - L(\mathbf{x}, \dot{\mathbf{x}}))$ from which L can be recovered just by applying the Legendre transform again. The function H is the Hamiltonian, and gives an equivalent formulation of (4.1) in *Hamiltonian form*:

$$\dot{x}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial x_j}$$

Convexity of the Lagrangian in the velocity variables ensures the possibility of going back and forth between the two formulations. Notice that the supremum in the definition of H is attained at the unique $\dot{\mathbf{x}}$ given by $\mathbf{p} = m\dot{\mathbf{x}}$: this defines the *conjugate momentum*.

5 The second variation

Consider the functional $I[y] = \int_a^b f(x, y, y') dx$ on the space V of C^1 functions with $y(a) = \alpha$ and $y(b) = \beta$. Let V_0 be the vector space of C^1 functions with y(a) = 0 and y(b) = 0.

Definition 5.0.1 A function $y \in V$ is a weak local minimizer for I if $I[y + \phi] \ge I[y]$ for all $\phi \in V_0$ with $\|\phi\|_{C^1} = \max_{[a,b]} |\phi(x)| + \max_{[a,b]} |\phi'(x)|$ sufficiently small. If the inequality is strict for such ϕ not identically zero, the minimum is strict. There is a corresponding definition for weak maximum.

(There is also a corresponding notion of *strong* minimizer for I with the norm $\|\phi\|_{C^0} = \max_{[a,b]} |\phi(x)|$ used instead of $\|\phi\|_{C^1}$, see Chapter 6 in Gelfand and Fomin.)

Assuming, as always, that f is smooth, Taylor's theorem implies that $\forall \epsilon > 0 \exists \delta(\epsilon) > 0$ such that for all $x \in [a, b]$ and $\|\phi\|_{C^1} < \delta$:

$$|f(x, y + \phi, y' + \phi') - f(x, y, y') - \phi f_y(x, y, y') - \phi' f_{y'}(x, y, y') - Q| < \epsilon(|\phi|^2 + |\phi'|^2)$$

where Q is the quadratic part of the Taylor expansion

$$Q = \frac{1}{2} \big(\phi^2 f_{yy}(x, y, y') + 2\phi \phi' f_{yy'}(x, y, y') + \phi'^2 f_{y'y'}(x, y, y') \big).$$

Here ϕ, ϕ' are evaluated with argument x. From this follows a corresponding Taylor expansion for the functional I:

$$I[y + \phi] = I[y] + DI[y](\phi) + \frac{1}{2}D^2I[y](\phi) + \mathcal{R}$$

where $|\mathcal{R}| < \epsilon \int_a^b (|\phi|^2 + |\phi'|^2) dx$ for $\|\phi\|_{C^1} < \delta(\epsilon)$. The quadratic part

$$D^{2}I[y](\phi) = \int \left(\phi^{2}f_{yy}(x, y, y') + 2\phi\phi'f_{yy'}(x, y, y') + \phi'^{2}f_{y'y'}(x, y, y')\right) dx$$

is sometimes called the second variation, and denoted $\delta^2 I$. From this we can read off:

Lemma 5.0.2 (Necessary conditions) If $y \in V$ is a weak minimum then $DI[y](\phi) = 0 \forall \phi \in V_0$ and the second variation $D^2I[y](\phi) \ge 0 \forall \phi \in V_0$.

Lemma 5.0.3 (Sufficient conditions) Assume $y \in V$ is such that $DI[y](\phi) = 0 \forall \phi \in V_0$ and the second variation satisfies, for some c > 0,

$$D^{2}I[y](\phi) \ge c \int_{a}^{b} (|\phi|^{2} + |\phi'|^{2}) dx \; \forall \phi \in V_{0}.$$
(5.2)

Then y is a weak local minimum.

Recall that if y is C^2 it solves the Euler-Lagrange equation if $DI[y](\phi) = 0 \forall \phi \in V_0$. The fact that $\phi(a) = 0 = \phi(b)$ means that in this case the formula for the second variation can be put into Sturm-Liouville form:

$$D^{2}I[y](\phi) = \int_{a}^{b} (p(x)\phi'^{2} + q(x)\phi^{2})dx$$

where $p(x) = f_{y'y'}(x, y(x), y'(x))$ and $q(x) = f_{yy}(x, y(x), y'(x)) - \frac{d}{dx}(f_{yy'}(x, y(x), y'(x)))$. One explicit approach to determining whether (5.2) holds for some c > 0 is to calculate the eigenvalues of the Sturm-Liouville operator $L = -(p\phi')' + q\phi$. There are also general conditions which ensure (5.2): it is sufficient that p(x) > 0 on [a, b] and that there are no conjugate points, i.e. there are no points $\tilde{a} \in (a, b]$ such that there is a non-trivial function h such that Lh = 0 and $h(a) = 0 = h(\tilde{a})$. This is proved in theorem 1 in section 26 of Gelfand and Fomin.

Example sheet 1 6

- 1. Prove that if $f \in C^1(\mathbb{R})$ has only one stationary point which is a local minimum, then it must be a global minimum. Give a counter-example to show this is false in \mathbb{R}^2 . * Prove that a real symmetric matrix A_{ij} is > 0, in the sense defined in §2.2, iff all its
- eigenvalues are positive. * Prove, using the Bolzano-Weierstrass property, but without using diagonalizability, that if a real symmetric matrix $A_{ij} > 0$ then $\sum_{ij} A_{ij} v_i v_j \ge c \|\mathbf{v}\|^2$ for some c > 0. (After analysis II).
- 4. * Let $f \in C^2(\mathbb{R}^2)$ have a stationary point $\mathbf{x} = (x^1, x^2)$ and let $A_{ij} = \partial_{ij}^2 f(\mathbf{x})$. Show that
- $A_{11} + A_{22} > 0$ and $A_{11}A_{22} A_{12}^2 > 0$ implies $A_{ij} > 0$ so that **x** is a strict local minimum. 5. Given $f : \mathbb{R}^n \to \mathbb{R}$ define its epigraph to be $E_f = \{(\mathbf{x}, z) : z \ge f(\mathbf{x})\} \subset \mathbb{R}^{n+1}$. Show that f is a convex function iff E_f is convex subset.
- Give an example of a function which is strictly convex but whose second derivative is not everywhere > 0. Show that x^2/y is convex on the upper half plane (x, y) : y > 0. * Show that if $f \in C^2(\mathbb{R})$
- is convex then the function $yf(y^{-1}x)$ is convex on (x, y) : y > 0. 8. Given a family $L^{\alpha}(\mathbf{x})$ of affine functions indexed by $\alpha \in \mathbb{N}$, (or in fact an arbitrary index
- set) show that $f(\mathbf{x}) = \sup_{\alpha} L^{\alpha}(\mathbf{x})$ is convex. * Show that all C^1 convex functions arise in this way.
- * With L^{α} as in the previous question, show that the function $f(\mathbf{x}) = \inf_{\alpha} L^{\alpha}(\mathbf{x})$ is concave. 9. 10. For A any real symmetric $n \times n$ matrix consider $\lambda(A) = \sup_{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\| = 1} \mathbf{v} \cdot (A\mathbf{v})$. Use
- Lagrange multipliers to show that $\lambda(A)$ is the largest eigenvalue of A. * Also prove that λ is a convex function of A. (Assume the fact from analysis II that a continuous function on the sphere $\{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\| = 1\}$ attains its supremum.)
- 11. The area A of a triangle with sides a, b, c is given by

$$A = \sqrt{[s(s-a)(s-b)(s-c)]}, \text{ where } s = \frac{1}{2}(a+b+c).$$

(i) Show that of all triangles of given perimeter 2s, the triangle of largest area is equilateral. (ii) Find (in terms of the perimeter) the largest possible area of a right-angled triangle of given perimeter.

- 12. Prove that the Legendre transform of a function is always convex.
- 13. Find the Legendre transform of $f(x) = e^x$, (giving its domain also). Find the Legendre transform of $f(x) = a^{-1}x^a, a > 1$ defined on x > 0, and deduce $xy \le a^{-1}x^a + b^{-1}y^b$ for $a^{-1} + b^{-1} = 1$ (Young).
- 14. * Find the Legendre transform of $f(\mathbf{x}) = \frac{1}{2} \sum_{ij} A_{ij} x_i x_j$ where A_{ij} is a positive symmetric matrix.
- 15. For an ideal gas, the internal energy U = U(S, V) as a function of entropy and volume is

$$U = U_0 + \alpha n R T_0 \left[\left(\frac{V_0}{V} \right)^{\frac{1}{\alpha}} e^{\frac{S - S_0}{\alpha n R}} - 1 \right]$$

for some constants $U_0, T_0, V_0, S_0, \alpha, n, R$. Calculate the pressure and temperature (defined by dU = TdS - pdV, and verify that pV = nRT (ideal gas equation of state). Calculate also the constant volume heat capacity $C_V = T \frac{\partial S}{\partial T}|_V$, and comment on the convexity of U as a function of S. Calculate the Helmholtz free energy F = F(T, V) defined by $F(T, V) = \min_{S} (U(S, V) - TS)$. [In this formula T is a fixed number - do not substitute for T from the formula you derived in the first part of the question!] * For black body radiation the internal energy U = U(S, V) as a function of entropy and

16. volume is

$$U(S,V) = \left(\frac{3S}{4}\right)^{\frac{4}{3}} \left(\frac{1}{CV}\right)^{\frac{1}{3}}$$

where C is a constant. Calculate P, T as in the previous question and verify that the energy density (i.e. the internal energy per unit volume) is CT^4 and that the value of the pressure is $\frac{1}{3}$ of the energy density. Calculate the Helmholtz free energy F = F(T, V) defined by $F(T, V) = \min_{S}(U(S, V) - TS)$, and show that its value is $-\frac{1}{3}U$.

17. Show that the Euler-Lagrange equation of the functional

$$I[y] = \int_{x_1}^{x_2} f(y, y') dx = 0, \ y(x_1) = y_1 \text{ and } y(x_2) = y_2 \text{ fixed}$$

has the first integral $f(y, y') - y' \frac{\partial}{\partial y'} f(y, y') = \text{ constant.}$ The curve assumed by a uniform cable which is suspended between two points (-a, b) and (a, b) minimises the potential energy

$$\int_{-a}^{a} y(1+y'^2)^{1/2} dx$$

subject to the constraint that its length remains fixed,

$$\int_{-a}^{a} (1+y'^2)^{1/2} dx = 2L,$$

where L > a. Using the Lagrange multiplier method, show that the curve is a catenary

$$y - y_0 = c \cosh\left(\frac{x - x_0}{c}\right),$$

where c, x_0 and y_0 are constants. * Find an equation for c, and show that it has a unique positive solution.

18. Write down the Euler-Lagrange equation for the functional

$$I[u] = \int_{-\infty}^{+\infty} \frac{1}{2}u'^2 + (1 - \cos u)dx$$

and find all solutions which satisfy $\lim_{x\to-\infty} u(x) = 0$ and $\lim_{x\to+\infty} u(x) = 2\pi$. Show that if $u \in C^1(\mathbb{R})$ satisfies $\lim_{x\to-\infty} u(x) = 0$ and $\lim_{x\to+\infty} u(x) = 2\pi$

$$I[u] = \frac{1}{2} \int_{-\infty}^{+\infty} (u' - 2\sin\frac{u}{2})^2 \, dx + 8.$$

Deduce that a lower bound for I[u] amongst such functions is 8, and give a *first order* differential equation which u must satisfy in order to realize this lower bound. Show that any solution of this first order equation solves the Euler-Lagrange equation you derived in the first part of the question. Give all the functions satisfying I[u] = 8.

- 19. * The brachistochrone problem leads to the study of the functional $I[y] = \int_0^X \frac{\sqrt{(1+y'^2)}}{\sqrt{y}} dx$ for C^1 curves y = y(x) > 0 such that y(0) = 0 and y(X) = Y > 0. Make the change of variables $y = \phi^2$, and show that $J[\phi] = I[\phi^2] = \int_0^X (\phi^{-2} + 4\phi'^2)^{\frac{1}{2}} dx$. Show that the function $l(u, v) = (u^{-2} + 4v^2)^{\frac{1}{2}}$ is strictly convex on $\{(u, v) : u > 0\} \in \mathbb{R}^2$. (This can be used to prove the cycloid solution which we obtained as a solution of the Euler-Lagrange equation, which is only a necessary condition for a minimizer, actually does minimze I.) Write down the Euler-Lagrange equation for $J[\phi]$, solve for ϕ and show that the solutions are cycloids, as for the Euler-Lagrange equation for I.
- 20. Obtain the Euler-Lagrange equation for the function x(t) that makes stationary the integral

$$\int_{t_1}^{t_2} f(t, x(t), \dot{x}(t), \ddot{x}(t)) dt$$

for fixed values of both x(t) and $\dot{x}(t)$ at both $t = t_1$ and $t = t_2$. Find the function x(t) with $x(1) = 1, \dot{x}(1) = -2, x(2) = \frac{1}{4}$ and $\dot{x}(2) = -\frac{1}{4}$, that minimises $\int_1^2 t^4 [\ddot{x}(t)]^2 dt$, including a demonstration that it is a minimizer (not just a stationary point) for the integral.

Example sheet 2 7

- Consider the problem of maximizing the area ¹/₂ ∫₀^{2π}(xẏ − yẋ)dt enclosed by a *closed* curve of fixed length l = ∫₀^{2π}(x² + ÿ)¹/₂ dt. Write down and solve the Euler-Lagrange equations for this constrained problem in parametric form.
 Consider the problem of minimizing I[ψ] = ∫_{-∞}^{+∞} (ψ'² + x²ψ²)dx amongst functions with
- $\int \psi^2 dx = 1.$

(i) Write down the corresponding Euler-Lagrange equation for this constrained problem.

(ii) Show that under the assumption $x\psi(x)^2 \to 0$ as $x \to +\infty$ it is possible to write $I[\psi] = 1 + \int_{-\infty}^{+\infty} (\psi' + x\psi)^2 dx$, and hence show that amongst such functions the minimum value of I is 1 and is attained on a function which should be given explicitly. Verify that this function satisfies the Euler-Lagrange equation you wrote down in (i), for an appropriate value of the Lagrange multiplier.

(iii) * Use the method of power series solutions to solve the Euler-Lagrange equation in (i), and comment on the relation with the minimizing function you obtained in (ii). (Here you

may find it useful to rewrite the Euler-Lagrange equation as an equation for $f = e^{\frac{x^2}{2}}\psi(x)$). 3. Obtain the Euler-Lagrange equations associated to the functionals

(i) $I[u] = \int (\frac{1}{2}u_t^2 - F(u_x)) dx dt$,

(i) ${}^{r}I[u] = \frac{1}{2}\int (u_t^2 - c(u)^2 u_x^2)dxdt$, where u = u(t, x) is a function on \mathbb{R}^2 , where F and c are given smooth functions. 4. Obtain the Euler-Lagrange equations associated to the functionals

(i)
$$I[u] = \int (|\nabla u|^2 + e^{2u}) dx dy$$
,

where u = u(x, y) is a function on \mathbb{R}^2 , and

(ii) *
$$I[u] = \int (\det Du) dx dy$$

where $u : \mathbb{R}^2 \to \mathbb{R}^2$, and det Du means the Jacobian determinant. What is unusual about the second example?

- 5. Consider $I[y] = \int_{-1}^{+1} (xy')^2 dx$ for y(x) in the set S of C^1 functions such that y(1) = 1 and y(-1) = -1. By considering $y_{\epsilon}(x) = \frac{\arctan x/\epsilon}{\arctan 1/\epsilon}$ show that $\inf_{y \in S} I[y] = 0$. Show that this
- infimum is not attained in S. 6. Consider $I[y] = \int_{-1}^{1} (1 y_x^2)^2 dx$ with y = y(x) lying in the set S' of piecewise C¹ functions such that $y(\pm 1) = 1$. By considering y(x) = |x| show that the $\min_{y \in S'} I[y] = 0$. Does there exist a C^1 (not just piecewise C^1) function for which this value is attained? 7. The smooth functions p(x), q(x) and $w(x) \ge 0$ are prescribed on [a, b], with w not identically
- zero. Show that the following three conditions are equivalent for C^2 functions y(x) satisfying y(a) = 0 = y(b):

(i) y satisfies:
$$(py')' - qy = -\lambda wy;$$

(ii) $I[u] = \int_a^b (pu'^2 + qu^2) dx$ is stationary at u = y amongst C^1 functions satisfying the boundary conditions and subject to the constraint $\int_a^b w u^2 dx = \text{constant};$

(iii) $Q[u] = \int_a^b (pu'^2 + qu^2) dx / \int_a^b wu^2 dx$, is stationary amongst C^1 functions satisfying the boundary conditions at u = y. What is the value of Q[y]? (Assume that y is not identically zero, and that w > 0 in (a, b) so that so that the denom-

inator ∫_a^b wy²dx in (iii) is non-zero.)
8. Let **x**(t) ∈ ℝ³ be a curve which is constrained to lie on the sphere S² = {**x** : ||**x**|| = 1}. Use the Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation

$$\ddot{\mathbf{x}} + \|\dot{\mathbf{x}}\|^2 \mathbf{x} = 0 \tag{7.3}$$

for the problem of minimizing $I[\mathbf{x}] = \int \|\dot{\mathbf{x}}\|^2 dt$ amongst curves satisfying the constraint $\mathbf{x}(t) \in S^2$. Show that the solutions of the Euler-Lagrange equation lie on a plane through the origin (they are great circles.) 9. * As an alternative approach to (7.3), let θ, ϕ be standard angles given by spherical coor-

dinates, and assume the curve on S^2 is given as $\phi = \phi(\theta)$. Show that the length integral

is $l[\phi] = \int (1 + \sin^2 \theta \phi'^2)^{\frac{1}{2}} d\theta$. Obtain the Euler-Lagrange equation associated to this functional, integrate it and show that the resulting solutions are great circles.

* Obtain (7.3) by considering variations of the curve $\mathbf{x}(t)$ of the form 10.

$$\mathbf{x}^{\epsilon}(t) \equiv \frac{\mathbf{x}(t) + \epsilon \mathbf{z}(t)}{\|\mathbf{x}(t) + \epsilon \mathbf{z}(t)\|}$$

- which lie on S^2 and requiring $\frac{d}{d\epsilon}I[\mathbf{x}^{\epsilon}] = 0$ at $\epsilon = 0$ for every smooth $\mathbf{z}(t)$. 11. * For the brachistochrone problem, show that the minimum travel time between two points at the same level and a distance l apart is $(2\pi l/g)^{1/2}$ (for a bead moving on a wire under the action of gravity without friction. The acceleration due to gravity is g.)
- * For the brachistochrone problem, show that there is a unique arc of a cycloid (without a cusp) from the starting point (0,0) to a point (X,Y) below the starting point. 13. In an optical medium filling the region 0 < y < h, the speed of light is

$$c(y) = \frac{c_0}{(1 - ky)^{1/2}} \quad (0 < k < 1/h).$$

Show that the paths of light rays in the medium are parabolic. Show also that, if a ray enters the medium at $(-x_0, 0)$ and leaves it at $(x_0, 0)$, then

$$(kx_0)^2 = 4ky_0(1 - ky_0),$$

where y_0 (< h) is the greatest value of y attained on the ray path. * Hamilton's Principle is applicable also to the *relativistic* dynamics of a charged particle in an electromagnetic field. The appropriate choice of Lagrangian $L[t, \mathbf{x}(t), \dot{\mathbf{x}}(t)]$ is 14.

$$L = -m_0 c^2 \gamma^{-1} + qA_0 + q\mathbf{v} \cdot \mathbf{A}$$

with the Lorentz factor $\gamma = (1 - v^2/c^2)^{-1/2}$, and where **x** is the position and **v** = $\dot{\mathbf{x}}(t)$ is the velocity of a particle of rest-mass m_0 and charge q in fields determined by a given scalar potential $A_0(\mathbf{x},t)$ and a given vector potential $\mathbf{A}(\mathbf{x},t)$. Verify that the Euler-Lagrange equations, with this choice of L, yield the equation of motion

$$\frac{d}{dt}(m_0\gamma\mathbf{v}) = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}),$$

- where the electric field $\mathbf{E} = \nabla A_0 \frac{\partial \mathbf{A}}{\partial t}$ and the magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$. 15. * With \mathbf{E} and \mathbf{B} as in the previous question, obtain the Euler-Lagrange equations associated to the functional $I[A] = \int (\mathbf{E}^2 \mathbf{B}^2) dx dt$. (This gives two of Maxwell's equations).
- 16. For the length functional for curves in the plane $I[y] = \int_a^b (1+y'^2)^{\frac{1}{2}} dx$, with $y(a) = \alpha$ and $y(b) = \beta$ show that the straight line $y = y_0(x)$ joining (a, α) to (b, β) solves the Euler-Lagrange equation. Compute the second variation of I at y_0 and show that it is positive.
- 17. For $I[y] = \int_a^b (y'^2 + y^4) dx$ with $y(a) = \alpha$, $y(b) = \beta$ find the Euler-Lagrange equation and the second variation. For the case $\alpha = 0 = \beta$ write down the solution of the Euler-Lagrange equation and the second variation explicitly, and show that the second variation is strictly positive.
- 18. For $I[y] = \int_0^1 \left(\frac{1}{2}y'^2 + F(y)\right) dx$ with y(0) = 0 = y(1). Assume that $F \in C^2(\mathbb{R})$ satisfies F'(0) = 0. Write down the associated Euler-Lagrange equation, and show that $y_0(x) = 0$ is a solution. Find the second variation. Give (i) a condition on F''(0) which ensures that the second variation is positive, and (ii) a condition which ensures the second variation has at least one negative eigenvalue.

8 Additional questions

- 1. The following questions from recent methods exams are good for practice with Lagrange multipliers, Euler-Lagrange equations etc: 2008 1/II/14D and 2/I/5D, 2007: 3/I/6E and 4/II/16E, 2006: 2/I/5A and 4/II/16B.
- 2. At how many points in \mathbb{R}^3 does the function

$$\phi(x_1, x_2, x_3) = \frac{1}{4}(x_1^4 + x_2^4 + x_3^4) - x_2x_3 - x_3x_1 - x_1x_2$$

take its minimum value? Show that this least value is -3. Show also that ϕ has one saddle point, at which the surface of vanishing ϕ is tangent to a double cone of semi-angle $\tan^{-1}(\sqrt{2})$.

- $\tan^{-1}(\sqrt{2})$. 3. Find the maximum volume of a rectangular parallelopiped inscribed inside an ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.
- 4. *Show that if $f:(a,b) \to \mathbb{R}$ is convex the one-sided difference quotients $\phi_x(h) = h^{-1}(f(x+h) f(x)), h > 0$ are non-decreasing i.e. $\phi_x(h) \leq \phi_x(k)$ if $0 < h \leq k$. Deduce that the right derivative $D^+f(x) \equiv \lim_{h\to 0^+, h>0} \phi_x(h)$ exists in $-\infty \cup \mathbb{R}$. By considering $\phi_{x-l}(l)$ for l > 0 show that for any $x \in \mathbb{R}$ the $\phi_x(h)$ are bounded below for h > 0 so that the right derivative $D^+f(x)$ just defined is finite for all x for a convex function with domain \mathbb{R} like f. Show that if the domain of f is only an interval that the same is true for x an interior point of the interval. Give an example of a convex function defined only on $[0,\infty)$ for which the right derivative at x = 0 is $-\infty$.
- 5. *Consider $I[y] = \int_a^b f(x, y, y') dx$ with $y(a) = \alpha, y(b) = \beta$, where f is a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$. Consider variations of the form $y^{\epsilon}(x) = y(x + \epsilon \phi(x))$ where $\phi \in C_0^{\infty}(a, b)$, and compute $\frac{d}{d\epsilon} I[y^{\epsilon}]|_{\epsilon=0}$; show that if y is such that this is zero for all such ϕ then the conservation law $y'f_{y'} f = constant$ holds.
- ac to fire-o, show they is buch that this is zero for all such φ then the conservation law y'fy' f = constant holds.
 6. Consider the area of a surface obtained by rotating a curve y = y(x) with y(a) = α and y(b) = β about the y-axis. Write down an integral for the area, and solve the associated Euler-Lagrange equation.
- 7. Consider $I[y] = \int_a^b f(x, y, y') dx$ with $y(a) = \alpha$ but y(b) is not fixed. As usual f is a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$. Show that if $y \in C^2$ minimizes I amongst C^1 functions with $y(a) = \alpha$ then as well as the Euler-Lagrange equation it satisfies the additional boundary condition $f_{y'}(b, y(b), y'(b)) = 0$. Together with the initial condition this gives the correct number of boundary conditions for the second order Euler-Lagrange equation. Boundary conditions which are a consequence of a variational problem in this way are called *natural*. What is the natural boundary condition for $I[u] = \int_B (\frac{1}{2}|\nabla u|^2 gu) dx$ where B is the unit ball in \mathbb{R}^n ?
- 8. Find the Hamiltonian obtained via the Legendre transformation from the Lagrangian $L = \frac{1}{2}g_{ij}\dot{x}_i\dot{x}_j V(\mathbf{x})$ (summation convention assumed).
- 9. Find the Hamiltonian for the relativistic dynamics of a charged particle by applying the Legendre transformation to the Lagrangian $L = -m_0 c^2 \gamma^{-1} qA_0 q\mathbf{v} \cdot \mathbf{A}$, which appears in sheet II.
- 10. Write down the Euler-Lagrange equation associated to $I[u] = \int_{-\infty}^{+\infty} \frac{1}{2}u'^2 + (1 \cos u)dx$ and show that $u(x) = 4 \arctan e^x$ is a solution with boundary conditions $\lim_{x \to -\infty} u(x) = 0$ and $\lim_{x \to +\infty} u(x) = 2\pi$. (i) Calculate the second variation, and (ii)* use the method of power series to find the eigenvalues of the associated Sturm-Liouville operator.
- 11. (i) Consider the functional $I[u] = \int_{-\pi}^{+\pi} \left(\frac{u_x^2}{2} fu\right) dx$ where u and f are real 2π periodic functions with zero mean: $\int_{-\pi}^{+\pi} u(x) dx = 0 = \int_{-\pi}^{+\pi} f(x) dx$. Write down the Euler-Lagrange equation.

(ii) Now consider the case that u, f are given by finite sums of exponentials:

$$u(x) = \sum_{0 < |n| \le N} u_n e^{inx}, \quad f(x) = \sum_{0 < |n| \le N} f_n e^{inx}$$

with the reality conditions $\bar{u}_n = u_{-n}, \bar{f}_n = f_{-n}$ and N any positive integer. Show that

 $I[u] = 2\pi J_N[\underline{u}]$ where $\underline{u} = (u_1, u_2, \dots u_n) \in \mathbb{C}^N$ and

$$J_{N}[\underline{u}] = \sum_{n=1}^{N} n^{2} |u_{n}|^{2} - \bar{f}_{n} u_{n} - f_{n} \bar{u}_{n}$$

Use completion of the square to show that the minimum of J_N is attained for some unique \underline{u} , and show that the corresponding function u solves the Euler-Lagrange equation in (i). (iii)* Use the direct method to prove the existence of a minimizer for J_N as follows. First show that J_N is bounded below, and let $\{\underline{u}^{\alpha}\}_{\alpha=1}^{\infty}$ be a sequence such that $J_N[\underline{u}^{\alpha}] \rightarrow \inf_{\underline{v} \in \mathbb{C}^N} J_N[\underline{v}]$ as $\alpha \to \infty$. Show that there is a subsequence which converges to a limit point \underline{u} which is a minimizer , i.e. $J_N[\underline{u}] = \inf_{\underline{v} \in \mathbb{C}^N} J_N[\underline{v}]$. Finally, deduce by considering the stationary condition satisfied by minimizers for J_N , that this minimizer is the same as the one you obtained in (ii). (iv)* [After Methods and Analysis II] Extend your argument in (iii) to the case $N = +\infty$

(iv)* [After Methods and Analysis II] Extend your argument in (iii) to the case $N = +\infty$ and show that amongst sequences such that $\sum_{n=1}^{\infty} n^2 |u_n|^2 < \infty$ there is one that minimizes J_{∞} . Work under the assumption that f is given by an absolutely convergent Fourier series. (Hint: look up Cantor diagonalization.)