Complex Methods: Example Sheet 2

Part IB, Lent Term 2025 J. E. Santos

Comments are welcomed and may be sent to J.E.Santos@damtp.cam.ac.uk. Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Series expansions and singularities

- 1. Find the first two non-vanishing coefficients in the series expansion about the origin of each of the following functions, assuming principal branches when there is a choice. You may make use of standard expansions for $\log(1+z)$, etc.
 - (i) $z/\log(1+z)$ (ii) $(\cos z)^{1/2} 1$ (iii) $\log(1+e^z)$ (iv) e^{e^z}

State the range of values of z for which each series converges.

How would your answers differ if you assumed branches different from the principal branch?

- **2.** Let a, b be complex constants, 0 < |a| < |b|. Use partial fractions to find the Laurent expansions of $1/\{(z-a)(z-b)\}$ about z=0 in each of the regions |z|<|a|, |a|<|z|<|b| and |z|>|b|.
- **3.** Find the first three terms of the Laurent expansion of $f(z) = \frac{1}{\sin^2 z}$ valid for $0 < |z| < \pi$.
- * Show that the function $g(z) = f(z) z^{-2} (z+\pi)^{-2} (z-\pi)^{-2}$ has only removable singularities in $|z| < 2\pi$. Explain how to remove them to obtain a function G(z) analytic in that region. Find a Taylor Series for G(z) about the origin and explain why it must be convergent in $|z| < 2\pi$. Hence, or otherwise, find the three non-zero central terms of the Laurent expansion of f(z)valid for $\pi < |z| < 2\pi$.
- **4.** Show that if f(z) has a zero of order M and g(z) a zero of order N at $z=z_0$, then f(z)/g(z) has a zero of order M-N if M>N, a removable singularity if M=N, and a pole of order N-Mif M < N. Show also that 1/f(z) has a pole of order N if and only if f(z) has a zero of order N.
- **5.** Write down the location and type of each of the singularities of the following functions:
 - (i) $\frac{1}{z^3(z-1)^2}$ (ii) $\tan z$ (iii) $z \coth z$ (iv) $\frac{e^z e}{(1-z)^3}$ (v) $\exp(\tan z)$ (vi) $\sinh \frac{z}{z^2-1}$ (vii) $\log(1+e^z)$ (viii) $\tan(z^{-1})$

Integration and residues

- **6.** Evaluate $\int z dz$ along the straight line from -1 to +1, and along the semicircular contour in the upper half-plane between the same two points; and evaluate $\oint_{\gamma} \bar{z} dz$ when γ is the circle |z| = 1, and when γ is the circle |z - 1| = 1.
- Show that if f(z) and g(z) are analytic, and g has a simple zero at $z=z_0$, the residue of f(z)/g(z) at $z=z_0$ is $f(z_0)/g'(z_0)$. In particular, show that $f(z)/(z-z_0)$ has residue $f(z_0)$.
 - (ii) Prove the formula for the residue of a function f(z) that has a pole of order N at $z=z_0$:

$$\lim_{z \to z_0} \left\{ \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} ((z-z_0)^N f(z)) \right\}.$$

(iii) Find the residues of the poles in question 5.

8. Evaluate, using Cauchy's theorem or the residue theorem,

(i)
$$\oint_{\gamma_1} \frac{dz}{1+z^2}$$
 (ii) $\oint_{\gamma_2} \frac{dz}{1+z^2}$ (iii) $\oint_{\gamma_3} \frac{e^z \cot z \, dz}{1+z^2}$ * (iv) $\oint_{\gamma_4} \frac{z^3 e^{1/z} \, dz}{1+z}$

where $x=\text{Re}(z),\ y=\text{Im}(z),$ γ_1 is the elliptical contour $x^2+4y^2=1,$ γ_2 is the circle $|z|=\sqrt{2},$ γ_3 is the circle $|z-(2+\mathrm{i})|=\sqrt{2}$ and γ_4 is the circle |z|=2, all traversed anti-clockwise.

9. By integrating the function $z^n(z-a)^{-1}(z-a^{-1})^{-1}$ around the unit circle and applying the residue theorem, evaluate

$$\int_0^{2\pi} \frac{\cos n\theta}{1 - 2a\cos\theta + a^2} \,\mathrm{d}\theta$$

where a is real, a > 1, and n is a non-negative integer.

* Obtain the same result using Cauchy's integral formula instead of the residue theorem.

The calculus of residues

- **10.** Evaluate $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1 + x + x^2}.$
- 11. By integrating around a keyhole contour, show that

$$\int_0^\infty \frac{x^{a-1} \, \mathrm{d}x}{1+x} = \frac{\pi}{\sin \pi a} \qquad (0 < a < 1).$$

Explain why the given restrictions on the value of a are necessary.

- * 12. By integrating around a contour involving the real axis and the line $z=re^{2\pi i/n}$, evaluate $\int_0^\infty \mathrm{d}x/(1+x^n)$, $n\geq 2$. Check (by change of variable) that your answer agrees with that of the previous question.
 - 13. Establish the following:

(i)
$$\int_0^\infty \frac{\cos x}{(1+x^2)^3} dx = \frac{7\pi}{16e}$$
 (ii) $\int_0^\infty \frac{x^2}{\cosh x} dx = \frac{\pi^3}{8}$

(iii)
$$\int_0^\infty \frac{\log x}{1+x^2} \, dx = 0$$
 * (iv) $\int_0^\infty \frac{\sin^2 x}{x^2} \, dx = \frac{\pi}{2}$

[For part (ii), use a rectangular contour. For part (iii), integrate $(\log z)^2/(1+z^2)$ around a keyhole, or $(\log z)/(1+z^2)$ along the real axis (or both). What goes wrong with $(\log z)/(1+z^2)$ around a keyhole?]

* **14.** Let P(z) be a non-constant polynomial. Consider the contour integral $I = \oint_{\gamma} (P'(z)/P(z)) dz$. Show that, if γ is a contour that encloses no zeros of P, then I = 0.

Evaluate the limit of I as $R \to \infty$, where γ is the circle |z| = R, and deduce that P has at least one zero in the complex plane.

15. By considering the integral of $(\cot z)/(z^2 + \pi^2 a^2)$ around a suitable large contour, prove that

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth \pi a$$

provided that ia is not an integer. By considering a similar integral prove also that, if a is not an integer,

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin^2 \pi a}.$$

Find an expression for $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}$ and take the limit as $a \to 0$ to deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.