Complex Methods: Example Sheet 2
Part IB, Lent Term 2020
Dr R. E. Hunt

Comments on or corrections to this example sheet are very welcome and may be sent to reh10@cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Series expansions and singularities

1. Find the first two non-vanishing coefficients in the series expansion about the origin of each of the following functions, assuming principal branches when there is a choice. You may make use of standard expansions for \(\log(1+z) \), etc.

 \[
 (\text{i}) \frac{z}{\log(1+z)} \quad (\text{ii}) (\cos z)^{1/2} - 1 \quad (\text{iii}) \log(1+e^z) \quad (\text{iv}) e^{az}
 \]

 State the range of values of \(z \) for which each series converges.

 How would your answers differ if you assumed branches different from the principal branch?

2. Let \(a, b \) be complex constants, \(0 < |a| < |b| \). Use partial fractions to find the Laurent expansions of \(1/\{(z-a)(z-b)\} \) about \(z = 0 \) in each of the regions \(|z| < |a|, |a| < |z| < |b| \) and \(|z| > |b| \).

3. Find the first three terms of the Laurent expansion of \(f(z) = \cosec^2 z \) valid for \(0 < |z| < \pi \).

 * Show that the function \(g(z) = f(z) - z^{-2} - (z+\pi)^{-2} - (z-\pi)^{-2} \) has only removable singularities in \(|z| < 2\pi \). Explain how to remove them to obtain a function \(G(z) \) analytic in that region. Find a Taylor Series for \(G(z) \) about the origin and explain why it must be convergent in \(|z| < 2\pi \). Hence, or otherwise, find the three non-zero central terms of the Laurent expansion of \(f(z) \) valid for \(\pi < |z| < 2\pi \).

4. Show that if \(f(z) \) has a zero of order \(M \) and \(g(z) \) a zero of order \(N \) at \(z = z_0 \), then \(f(z)/g(z) \) has a zero of order \(M-N \) if \(M > N \), a removable singularity if \(M = N \), and a pole of order \(N-M \) if \(M < N \). Show also that \(1/f(z) \) has a pole of order \(N \) if and only if \(f(z) \) has a zero of order \(N \).

5. Write down the location and type of each of the singularities of the following functions:

 \[
 (\text{i}) \frac{1}{z^n(z-1)^2} \quad (\text{ii}) \tan z \quad (\text{iii}) z \coth z \quad (\text{iv}) \frac{e^z - e}{(1-z)^3} \\
 (\text{v}) \exp(\tan z) \quad (\text{vi}) \sinh \frac{z}{z^2 - 1} \quad (\text{vii}) \log(1+e^z) \quad (\text{viii}) \tan(z^{-1})
 \]

Integration and residues

6. Evaluate \(\int z \, dz \) along the straight line from \(-1\) to \(+1\), and along the semicircular contour in the upper half-plane between the same two points; and evaluate \(\oint_{\gamma} \bar{z} \, dz \) when \(\gamma \) is the circle \(|z| = 1 \), and when \(\gamma \) is the circle \(|z-1| = 1 \).

7. (i) Show that if \(f(z) \) and \(g(z) \) are analytic, and \(g \) has a simple zero at \(z = z_0 \), the residue of \(f(z)/g(z) \) at \(z = z_0 \) is \(f(z_0)/g'(z_0) \). In particular, show that \(f(z)/g(z) \) has residue \(f(z_0) \).

 (ii) Prove the formula for the residue of a function \(f(z) \) that has a pole of order \(N \) at \(z = z_0 \):

 \[
 \lim_{z \to z_0} \left\{ \frac{1}{(N-1)!} \frac{d^{N-1}}{dz^{N-1}} \left((z - z_0)^N f(z) \right) \right\}.
 \]

 (iii) Find the residues of the poles in question 5.
8. Evaluate, using Cauchy’s theorem or the residue theorem,

\[
\begin{align*}
(i) & \int_{\gamma_1} \frac{dz}{1+z^2} \\
(ii) & \int_{\gamma_2} \frac{dz}{1+z^2} \\
(iii) & \int_{\gamma_3} \frac{e^z \cot zdz}{1+z^2} \\
(iv) & \int_{\gamma_4} \frac{z^3e^{1/z} dz}{1+z}
\end{align*}
\]

where \(\gamma_1\) is the elliptical contour (\(\Re z)^2 + 4(\Im z)^2 = 1\), \(\gamma_2\) is the circle \(|z| = \sqrt{2}\), \(\gamma_3\) is the circle \(|z - (2 + i)| = \sqrt{2}\) and \(\gamma_4\) is the circle \(|z| = 2\), all traversed anti-clockwise.

9. By integrating the function \(z^n(z - a)^{-1}(z - a^{-1})^{-1}\) around the unit circle and applying the residue theorem, evaluate

\[\int_0^{2\pi} \frac{\cos n\theta}{1 - 2a \cos \theta + a^2} d\theta\]

where \(a\) is real, \(a > 1\), and \(n\) is a non-negative integer.

* Obtain the same result using Cauchy’s integral formula instead of the residue theorem.

The calculus of residues

10. Evaluate \(\int_{-\infty}^{\infty} \frac{dx}{1+x+x^2}\).

11. By integrating around a keyhole contour, show that

\[\int_0^{\infty} \frac{x^{p-1} dx}{1+x} = \frac{\pi}{\sin \pi a} \quad (0 < a < 1).\]

Explain why the given restrictions on the value of \(a\) are necessary.

* 12. By integrating around a contour involving the real axis and the line \(z = re^{2\pi i/n}\), evaluate \(\int_0^{\infty} \frac{dx}{(1+x^n)}, \ n \geq 2\). Check (by change of variable) that your answer agrees with that of the previous question.

13. Establish the following:

\[
\begin{align*}
(i) & \int_0^{\infty} \frac{\cos x}{(1+x^2)^3} dx = \frac{7\pi}{16e} \\
(ii) & \int_0^{\infty} x^2 \sech x dx = \frac{\pi^3}{8} \\
(iii) & \int_0^{\infty} \log x \frac{dx}{1+x^2} = 0 \\
(iv) & \int_0^{\infty} \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}
\end{align*}
\]

[For part (ii), use a rectangular contour. For part (iii), integrate \((\log z)^2/(1+z^2)\) around a keyhole, or \((\log z)/(1+z^2)\) along the real axis (or both). What goes wrong with \((\log z)/(1+z^2)\) around a keyhole?]

* 14. Let \(P(z)\) be a non-constant polynomial. Consider the contour integral \(I = \oint_{\gamma} \frac{P'(z)}{P(z)} dz\). Show that, if \(\gamma\) is a contour that encloses no zeros of \(P\), then \(I = 0\).

Evaluate the limit of \(I\) as \(R \to \infty\), where \(\gamma\) is the circle \(|z| = R\), and deduce that \(P\) has at least one zero in the complex plane.

15. By considering the integral of \((\cot z)/(z^2 + \pi^2 a^2)\) around a suitable large contour, prove that

\[\sum_{n=\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth \pi a\]

provided that \(ia\) is not an integer. By considering a similar integral prove also that, if \(a\) is not an integer,

\[\sum_{n=\infty}^{\infty} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin^2 \pi a}.
\]

Find an expression for \(\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}\) and take the limit as \(a \to 0\) to deduce the value of \(\sum_{n=1}^{\infty} \frac{1}{n^2}\).