Complex Methods: Example Sheet 3
Part IB, Lent Term 2021
U. Sperhake

Comments are welcomed and may be sent to U.Sperhake@damtp.cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Fourier transforms

1. By using the relationship between the Fourier transform and its inverse, show that for real \(a \) and \(b \) with \(a > 0 \),

\[
\int_{-\infty}^{\infty} \frac{1}{\omega^2 + a^2} e^{i\omega t} \, d\omega = \frac{\pi e^{-a|t|}}{a} \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{b}{(i\omega + a)^2 + b^2} e^{i\omega t} \, d\omega = 2\pi e^{-at} \sin bt \, H(t)
\]

where \(H(t) \) is the Heaviside step function. What are the values of the integrals when \(a < 0 \)? What happens when \(a = 0 \)?

2. Show that the convolution of the function \(e^{-|x|} \) with itself is given by \(f(x) = (1 + |x|)e^{-|x|} \). Use the convolution theorem for Fourier transforms to show that

\[
f(x) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{e^{ikx}}{1 + k^2} \, dk
\]

and verify this result by contour integration.

3. Let

\[
f(x) = \begin{cases} 1 & |x| < \frac{1}{2}a, \\ 0 & \text{otherwise;}
\end{cases} \quad g(x) = \begin{cases} a - |x| & |x| < a, \\ 0 & \text{otherwise.}
\end{cases}
\]

Show that

\[
\tilde{f}(k) = \frac{2}{k} \sin \frac{ak}{2} \quad \text{and} \quad \tilde{g}(k) = \frac{4}{k^2} \sin^2 \frac{ak}{2}.
\]

What is the convolution of \(f \) with itself? Use Parseval’s identity to evaluate \(\int_{-\infty}^{\infty} (\sin^2 x) / x^2 \, dx \). Verify by contour integration the inversion formula for \(f(x) \) for all values of \(x \) except \(\pm \frac{1}{2}a \).

∗ Verify the inversion formula also at \(x = \pm \frac{1}{2}a \).

4. The displacement \(x(t) \) of a damped harmonic oscillator obeys the equation

\[
\ddot{x} + 2\gamma \dot{x} + q^2 x = f(t), \quad \text{where} \quad \gamma > 0.
\]

Assuming that the Fourier transforms \(\tilde{x}(\omega) \) and \(\tilde{f}(\omega) \) exist, show that

\[
x(t) = \int_{-\infty}^{\infty} G(t - t') f(t') \, dt', \quad \text{where} \quad G(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{q^2 + 2i\gamma \omega - \omega^2} \, d\omega.
\]

Show, by differentiation under the integral sign, that

\[
\frac{d^2}{dt^2} G(t) + 2\gamma \frac{d}{dt} G(t) + q^2 G(t) = \delta(t).
\]

Show that for \(0 < \gamma < q \),

\[
G(t) = \frac{1}{p} e^{-\gamma t} \sin(pt) \, H(t), \quad \text{where} \quad p = \sqrt{q^2 - \gamma^2}.
\]

[You may use here the results from question 1.]
Laplace transforms

5. Starting from the Laplace transform of 1 (namely \(s^{-1}\)), and using only standard properties of the Laplace transform (shifting, etc.), find the Laplace transforms of the following functions:
 (i) \(e^{-2t}\); (ii) \(t^3e^{-3t}\); (iii) \(e^{3t}\sin 4t\); (iv) \(e^{-4t}\cosh 4t\); (v) \(e^{-t}H(t-1)\), where \(H\) is the Heaviside step function.

6. Using partial fractions and expressions for the Laplace transforms of elementary functions, find the inverse Laplace transform of \(F(s) = (s+3)/((s-2)(s^2+1))\). Verify this result using the Bromwich inversion formula.

7. Use Laplace transforms to solve the differential equation
 \[
 \frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 3\frac{dy}{dt} - y = t^2 e^t
 \]
 with initial conditions \(y(0) = 1, \dot{y}(0) = 0, \ddot{y}(0) = -2\).

8. Consider a linear system obeying the differential equation
 \[
 \dddot{y} - 3\ddot{y} + 2\dot{y} = u(t), \quad \dot{y}(0) = y(0) = 0.
 \]
 Use Laplace transforms to determine the response of the system to the signal \(u(t) = t\). Determine also the response \(y(t)\) to a signal \(u(t) = \delta(t)\).
 \[\text{[For} \delta(t), \text{take the Laplace transform to be} \ F(s) = \int_0^\infty f(t) e^{-st} \, dt, \text{i.e. start “just left of 0”]}\]

9. Solve the integral equation \(f(t) + 4 \int_0^t (t - \tau) f(\tau) \, d\tau = t\) for the unknown function \(f\). Verify your solution.

* 10. The zeroth order Bessel function \(J_0(x)\) satisfies the differential equation
 \[
xJ_0'' + J_0' + xJ_0 = 0
 \]
 for \(x > 0\), with \(J_0(0) = 1\) (and \(J_0'(0) = 0\) from the equation). Find the Laplace transform of \(J_0\) and deduce that \(\int_0^\infty J_0(x) \, dx = 1\). Find the convolution of \(J_0\) with itself.

11. Use Laplace transforms to solve the heat equation \(\partial T/\partial t = \partial^2 T/\partial x^2\) with boundary conditions \(T(x, 0) = \sin^3 \pi x \quad (0 < x < 1), T(0, t) = T(1, t) = 0 \quad (t > 0)\). \([\text{Hint:} \sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta]\]

12. Using the equality \(\int_0^\infty e^{-x^2} \, dx = \frac{1}{2} \sqrt{\pi}\), find the Laplace transform of \(f(t) = t^{-\frac{1}{2}}\). By integrating around a Bromwich keyhole contour, verify the inversion formula for \(f(t)\). What is the Laplace transform of \(t^{\frac{1}{2}}\)?

* 13. The gamma and beta functions are defined for \(z, w \in \mathbb{C}\) by
 \[
 \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt \quad \text{and} \quad B(z, w) = \int_0^1 t^{z-1}(1-t)^{w-1} \, dt
 \]
 when \(\Re(z), \Re(w) > 0\). Show that \(\Gamma(z + 1) = z\Gamma(z)\) and hence that \(\Gamma(n + 1) = n!\) if \(n\) is a non-negative integer. Using the previous question, write down the value of \(\Gamma\left(\frac{1}{2}\right)\).
 For a fixed value of \(z\), find the Laplace transform of \(f(t) = t^{z-1}\) in terms of \(\Gamma(z)\). Find the Laplace transform of the convolution \(t^{z-1} \ast t^{w-1}\). Hence establish that
 \[
 B(z, w) = \frac{\Gamma(z) \Gamma(w)}{\Gamma(z + w)}.
 \]
 The domain of \(\Gamma\) and \(B\) can be extended to the whole of \(\mathbb{C}\), apart from isolated singularities, by analytic continuation. Does the relation (*) still hold?