Mathematical Tripos Part IB Methods, Example Sheet 1

Michaelmas 2024 Dr A.C.L. Ashton

Comments and corrections to acla2@damtp.cam.ac.uk. Sheet with commentary available to supervisors.

1. Define $c_n(\theta) = \cos(2\pi n\theta/L)$ and $s_n(\theta) = \sin(2\pi n\theta/L)$. Verify the orthogonality relations

$$\langle c_n, c_m \rangle = \langle s_n, s_m \rangle = \frac{1}{2}L\delta_{mn}, \quad \langle 1, c_n \rangle = \langle 1, s_m \rangle = \langle c_n, s_m \rangle = 0 \quad m, n \ge 1$$

where $\langle f, g \rangle = \int_0^L f(\theta) \overline{g(\theta)} \, \mathrm{d}\theta$. This shows $\{1, c_n, s_n\}_{n=1}^\infty$ are orthogonal.

2. Consider 2-periodic function $f : \mathbf{R} \to \mathbf{R}$ with $f(\theta) = (1 - \theta^2)^2$ when $\theta \in [-1, 1)$. Show that it has Fourier series

$$f(\theta) \sim \frac{8}{15} + \frac{48}{\pi^4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4} \cos(n\pi\theta).$$

Can we replace ' \sim ' with '=' in this case? Sketch the graph of f and comment on the number of continuous derivatives it has and the relation to the decay of the Fourier coefficients.

3. Suppose $f(\theta) = \theta^2$ when $\theta \in [0, \pi)$.

(i) Construct (a) the Sine series for f and (b) the Cosine series for f, each having period 2π . Sketch the 2π -periodic functions obtained in (a) and (b) in the range $\theta \in [-6\pi, 6\pi)$.

(ii) If the series in (a) and (b) are formally differentiated term-by-term, are the resulting series related to the Fourier series for 2π -periodic functions $g, h : \mathbf{R} \to \mathbf{R}$ for which $g(\theta) = 2\theta$ and $h(\theta) = 2|\theta|$ when $\theta \in [-\pi, \pi)$?

4. Find the complex Fourier series for the 2π -periodic function $f : \mathbf{R} \to \mathbf{R}$ for which $f(\theta) = e^{\theta}$ when $\theta \in [-\pi, \pi)$. Using Parseval's theorem, deduce that

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} \left(\pi \coth \pi - 1 \right).$$

Obtain the same result by evaluating the complex Fourier series at an appropriate point in $[-\pi, \pi)$.

- 5. We say a sequence $\{r_n\}_{n \in \mathbb{Z}}$ decays rapidly if $|n|^k r_n \to 0$ as $|n| \to \infty$ for every $k \ge 0$.
- (i) Let f be a smooth, L-periodic function. Show that the complex Fourier coefficients $\{\hat{f}_n\}$ decay rapidly.
- (ii) Construct an L-periodic function with rapidly decaying, non-zero complex Fourier coefficients.
- **6.** By considering the Sturm-Liouville problem for y = y(x)

$$\begin{cases} y'' + \lambda y = 0, & 0 < x < L, \\ y'(0) = 0, \\ y'(L) = 0, \end{cases}$$

re-derive the Cosine series representation for any $f \in C^2[0, L]$ with f'(0) = f'(L) = 0.

7. Prove that the boundary value problem for y = y(x)

$$\begin{cases} y'' + \lambda y = 0, & 0 < x < 1, \\ y(0) = 0, \\ y(1) + y'(1) = 0. \end{cases}$$

has infinitely many eigenvalues $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$ and indicate roughly the behaviour of λ_n as $n \to \infty$.

8. Express the following eigenvalue problems as Sturm-Liouville problems on [-1, 1] and [0, 1], respectively:

(i)
$$(1-x^2)y'' - 2xy' + \lambda y = 0$$
, (ii) $x(1-x)y'' - (ax-b)y' + \lambda y = 0$,

where a > b > 0 are constant and λ is constant. Are either of these problems singular? (iii) Find the eigenvalues and eigenfunctions of the boundary value problem for y = y(x)

$$\begin{cases} y'' + 4y' + (4+\lambda)y = 0, & 0 < x < 1, \\ y(0) = 0, & \\ y(1) = 0. & \end{cases}$$

What is the orthogonality relation for these eigenfunctions?

9. Define the functions $q_n(x) = \frac{1}{2^n n!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n (x^2 - 1)^n$ for $n = 1, 2, \ldots$

(a) Show (i) q_n is a polynomial of degree n; (ii) $q_n(1) = 1$ for all n; (iii) q_n satisfies Legendre's equation. (b) Deduce (i) $q_n = P_n$; (ii) $\int_{-1}^1 P_n(x)^2 dx = 2/(2n+1)$; (iii) $\int_{-1}^1 x^m P_n(x) dx = 0$ if m < n.

Hint: for (a)(iii) show $u_n = (x^2 - 1)^n$ satisfies $(x^2 - 1)u'_n - 2nxu_n = 0$ and differentiate further.

10. Recall from lectures that if $y_{\alpha}(r) = J_m(\alpha r)$, where J_m is the *m*th order Bessel function of the 1st kind, then

$$-\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}y_{\alpha}}{\mathrm{d}r}\right) + \frac{m^2}{r}y_{\alpha} = \alpha^2 r y_{\alpha}, \quad r \in (0,1).$$

Show that if $y_{\beta}(r) = J_m(\beta r)$ then $[r(y_{\alpha}y'_{\beta} - y_{\beta}y'_{\alpha})]' = (\alpha^2 - \beta^2) ry_{\alpha}y_{\beta}$. Deduce that

$$\int_0^1 J_m(\alpha r) J_m(\beta r) r \, \mathrm{d}r = \frac{\beta J_m(\alpha) J'_m(\beta) - \alpha J_m(\beta) J'_m(\alpha)}{\alpha^2 - \beta^2}, \quad \alpha \neq \beta$$

Use this result to show that $\int_0^1 J_m(j_{mk}r)J_m(j_{m\ell}r)r\,dr = \frac{1}{2}[J'_m(j_{mk})]^2\delta_{k\ell}$, where $J_m(j_{mk}) = 0, k = 1, 2, ...$

Additional problems

These questions should not be attempted at the expense of earlier ones.

11. Let f be the 2π -periodic square wave for which $f(\theta) = 1$ on $[0, \pi)$ and $f(\theta) = 0$ on $[\pi, 2\pi)$. (i) Sketch the graph of f and show that

$$f(\theta) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin\left[(2n-1)\theta\right]}{2n-1}$$

(ii) Let $S_N f$ denote the partial Fourier series for f. By considering $\sum_{n=1}^N \cos[(2n-1)\theta]$, or otherwise, show

$$(S_N f)(\theta) = \frac{1}{2} + \frac{1}{\pi} \int_0^\theta \frac{\sin(2N\phi)}{\sin\phi} \,\mathrm{d}\phi.$$

(iii) Deduce that $(S_N f)(\theta)$ has a local extrema at $\theta = \pi m/2N, m \in \mathbb{Z} \setminus 2N\mathbb{Z}$ and that for large N

$$(S_N f)\left(\frac{\pi}{2N}\right) \approx \frac{1}{2} + \frac{1}{\pi} \int_0^{\pi} \frac{\sin u}{u} \, \mathrm{d}u = \frac{1}{2} + \int_0^{\pi/2} \frac{\sin u}{u(\pi - u)} \, \mathrm{d}u \ge 1.08$$

Hint for lower bound: $\sin u \ge u - u^3/3!$. Comment on the accuracy of partial Fourier series at discontinuities.

12. Set $V = \{y \in C^2[a, b] : y(a) = y(b) = 0\}$ (i.e. Dirichlet boundary conditions) and let $L = \frac{1}{w} \left[-\frac{d}{dx} \left(p \frac{d}{dx} \right) + q \right]$ be a Sturm-Liouville operator with p, q, w smooth and p, w > 0 on [a, b]. Consider the Rayleigh quotient

$$R[y] = \frac{\int_a^b \left[p\left(y'\right)^2 + qy^2 \right] \mathrm{d}x}{\int_a^b wy^2 \, \mathrm{d}x}, \quad y \in V$$

- (a) By considering $\langle Ly, y \rangle_w$, show that if $y \in V$ satisfies $Ly = \lambda y$ then $\lambda = R[y]$.
- (b) Let $\lambda_1 = \inf_{y \in V \setminus \{0\}} R[y]$ and suppose that there exists a $y_1 \in V$ such that $R[y_1] = \lambda_1$. If we set

$$F(\epsilon) = R[y_1 + \epsilon\eta],$$

where $\eta \in V$, explain why F'(0) = 0. Hence show that $Ly_1 = \lambda_1 y_1$. Comment on this result in relation to finding the smallest eigenvalue of L. How might you try to find the second smallest?

(c) Take [a,b] = [0,1] and $L = -d^2/dx^2$. Compute R[y] where y(x) = x(1-x) and deduce $\lambda_{\min} = \pi^2 \leq 10$.

¹You may assume that if $\int_a^b f\eta \, dx = 0$ for all $\eta \in V$ then f = 0.