METHODS — EXAMPLES I

Fourier series

1. Fourier coefficients (full-range series). For the periodic function \(f(x) = (x^2 - 1)^2 \) on the interval \(-1 \leq x < 1\), show that it has the Fourier series

\[
 f(x) = \frac{8}{15} + \frac{48}{\pi^4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4} \cos n\pi x .
\]

Sketch the function \(f(x) \) and comment on its differentiability and the order of the terms in its Fourier series as \(n \to \infty \).

2. Fourier coefficients (half-range series). Suppose that \(f(x) = x^2 \) for \(0 \leq x \leq \pi \). Express \(f(x) \) as (a) a Fourier sine series, and (b) a cosine series, each having period \(2\pi \). Sketch the functions represented by (a) and (b) in the range \(-6\pi \) to \(6\pi \). If the series (a) and (b) are differentiated term-by-term, how are the answers related (if at all) to the Fourier series for \(g(x) = 2x \) and \(h(x) = 2|x| \) each in the range \((-\pi, \pi)\)?

3. Series summation. Find the Fourier series of \(f(x) = e^x \) on \((-\pi, \pi)\). Deduce that

\[
 S = \sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} (\pi \coth \pi - 1) .
\]

4. Parseval’s identity and a low pass filter. (i) Given that a function \(f(t) \) defined over the interval \((-T, T)\) has the Fourier series

\[
 f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi t}{T}\right) + b_n \sin\left(\frac{n\pi t}{T}\right) \right] ,
\]

show that \(\frac{1}{T} \int_{-T}^{T} [f(t)]^2 \, dt = \frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \),

where you may assume \(f(t) \) is such that this series is convergent.

(ii) A unit amplitude square wave of period \(2T \) is given by \(f(t) = 1 \) for \(0 < t < T \) and \(f(t) = -1 \), for \(-T < t < 0 \). Suppose this is the input for a system which permits angular frequencies less than \(\frac{3}{2} \pi T^{-1} \) to be perfectly transmitted and frequencies greater than \(\frac{3}{2} \pi T^{-1} \) to be perfectly absorbed. Calculate the form of the output. The power is proportional to the mean value of \(f^2(t) \); what fraction of the incident power is transmitted?

5. Discontinuities and the Wilbraham-Gibbs phenomenon. (i) Suppose that \(f \) is a square wave given by

\[
 f(x) = \begin{cases}
 1 & 0 < x < \pi \\
 0 & \pi < x < 2\pi
\end{cases} .
\]

Sketch \(f \) and show that \(f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1} . \)

(ii) Now define the partial sum of this series as

\[
 S_N(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{N} \frac{\sin(2n-1)x}{2n-1} ,
\]

and find the following expression

\[
 S_N(x) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{x} \frac{\sin 2Nt}{\sin t} \, dt .
\]

[Hint: consider \(\sum_{n=1}^{N} \cos(2n-1)x \).]

(iii) Deduce that \(S_N(x) \) has extrema at \(x = m\pi/2N \), \(m = 1, 2, ..., 2N - 1 \), \(2N + 1 \), ..., \(\text{i.e. all integer } m \text{ except } m = 2kN \), \(k \text{ integer} \) and that the height of the first maximum for large \(N \) is approximately

\[
 S_N\left(\frac{\pi}{2N} \right) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin u}{u} \, du \approx 1.089 .
\]

Comment on the accuracy of Fourier series at discontinuities. (This question takes you through some important steps which are used in the proof of Fourier’s theorem - refer, for example, to chapter 14 of Jeffreys & Jeffreys. Henry Wilbraham was a fellow of Trinity who wrote a paper (when he was 22) deriving this result 50 years before Gibbs, after whom it is commonly named.)
Sturm-Liouville theory

6. **Eigenfunctions and eigenvalues.** Prove that the boundary value problem

\[y'' + \lambda y = 0; \quad y(0) = 0, \quad y(1) + y'(1) = 0, \]

has infinitely many eigenvalues \(\lambda_1 < \lambda_2 < \lambda_3 \ldots \) Indicate roughly the behaviour of \(\lambda_n \) as \(n \to \infty \).

7. **Recasting in Sturm-Liouville form.** Express the following equations in Sturm-Liouville form:

\[
\begin{align*}
(1 - x^2)y'' - 2xy' + n(n + 1)y &= 0, \\
x(x - 1)y'' + [(1 + a + b)x - c]y' + aby &= 0,
\end{align*}
\]

where \(n, a, b, \) and \(c \) are constants.

(iii) Find the eigenvalues and eigenfunctions for

\[y'' + 4y' + (4 + \lambda)y = 0, \quad y(0) = y(1) = 0. \]

What is the orthogonality relation for these eigenfunctions?

8. **Bessel’s equation.** (i) Show that the eigenvalues of the Sturm-Liouville problem

\[\frac{d}{dx} \left(x \frac{dU}{dx} \right) + \lambda U = 0, \quad 0 < x < 1, \]

with \(u(x) \) bounded as \(x \to 0 \) and \(u(1) = 0 \), are \(\lambda = j_n^2 \) \((n = 1, 2, \ldots) \), where the \(j_n \) are the zeros of the Bessel function \(J_0(z) \), arranged in ascending order. [Note: Bessel’s equation of order zero is \(\frac{d}{dz}(z \frac{d}{dz}) + y = 0, (z > 0) \), which you may assume has one solution \(J_0(z) \) defined as

\[J_0(z) = \sum_{m=0}^{\infty} (-1)^m \frac{z^{2m}}{2^m (m!)^2} \]

and a second solution that is the sum of a regular function and \(J_0(z) \log z \).]

(ii) Using integration by parts on the differential equations for \(J_0(\alpha x) \) and \(J_0(\beta x) \), show that

\[
\begin{align*}
\int_0^1 J_0(\alpha x) J_0(\beta x) x dx &= \frac{\beta J_0(\alpha) J_0'(\beta) - \alpha J_0(\beta) J_0'(\alpha)}{\alpha^2 - \beta^2} \quad (\beta \neq \alpha), \\
\int_0^1 J_0(j_n x) J_0(j_m x) x dx &= 0, \quad (n \neq m), \\
\int_0^1 [J_0(j_n x)]^2 x dx &= \frac{1}{2}[J_0'(j_n)]^2. \quad [\text{Hint: Consider } \beta = j_n + \epsilon \text{ as } \epsilon \to 0.]
\end{align*}
\]

(iii) Assume that the inhomogeneous equation

\[\frac{d}{dx} \left(x \frac{dU}{dx} \right) + \tilde{\lambda} U = x f(x), \]

where \(\tilde{\lambda} \) is not an eigenvalue, has a unique solution such that \(u(x) \) is bounded as \(x \to 0 \) and \(u(1) = 0 \). Assuming also that \(f(x) \) satisfies the same boundary conditions as \(u \) and the completeness of the eigenfunctions \(J_0(j_n x) \), obtain the eigenfunction expansion of \(u \).

9. **Higher order self-adjoint form.** Show that the fourth-order differential operator

\[L = \sum_{r=0}^{4} p_r(x) \frac{d^r}{dx^r}, \]

where the \(p_r(x) \) are real functions, is self-adjoint if and only if \(p_4 = 2p_4' \), \(p_1 = p_2 - p_4'' \).

Considering a specific example, show that the boundary value problem

\[-y'''' + \lambda y = 0; \quad y(0) = y(1) = y'(0) = y'(1) = 0\]

has infinitely many eigenvalues \(\lambda_1 < \lambda_2 < \lambda_3 \ldots \) Indicate roughly the behaviour of \(\lambda_n \) as \(n \to \infty \).

† If you find any errors in the Methods Examples sheets, please inform your supervisor or email c.p.caulfield@bpi.cam.ac.uk.