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Mathematical Tripos Part IB Michaelmas term 2017 Professor C. P. Caulfield

Course C10—No. B6

METHODS — EXAMPLES I

Fourier series

1. Fourier coefficients (full-range series). For the periodic function f(x) = (x2 − 1)2 on the interval −1 ≤ x < 1,
show that it has the Fourier series

f(x) =
8

15
+

48

π4

∞
∑

n=1

(−1)n+1

n4
cosnπx .

Sketch the function f(x) and comment on its differentiability and the order of the terms in its Fourier series as
n → ∞.

2. Fourier coefficients (half-range series). Suppose that f(x) = x2 for 0 ≤ x ≤ π. Express f(x) as (a) a Fourier
sine series, and (b) a cosine series, each having period 2π. Sketch the functions represented by (a) and (b) in the
range −6π to 6π. If the series (a) and (b) are differentiated term-by-term, how are the answers related (if at all) to
the Fourier series for g(x) = 2x and h(x) = 2|x| each in the range (−π, π)?

3. Series summation. Find the Fourier series of f(x) = ex on (−π, π). Deduce that

∞
∑

n=1

1

1 + n2
=

1

2
(π cothπ − 1) .

4. Parseval’s identity and a low pass filter. (i) Given that a function f(t) defined over the interval (−T, T ) has the
Fourier series

f(t) =
1

2
a0 +

∞
∑

n=1

[

an cos(
nπt

T
) + bn sin(

nπt

T
)

]

, show that
1

T

∫ T

−T

[f(t)]2dt =
1

2
a20 +

∞
∑

n=1

(a2n + b2n) ,

where you may assume f(t) is such that this series is convergent.

(ii) A unit amplitude square wave of period 2T is given by f(t) = 1 for 0 < t < T and f(t) = −1, for −T < t < 0.
Suppose this is the input for a system which permits angular frequencies less than 9

2
πT−1 to be perfectly transmitted

and frequencies greater than 9

2
πT−1 to be perfectly absorbed. Calculate the form of the output. The power is

proportional to the mean value of f2(t); what fraction of the incident power is transmitted?

5. Discontinuities and the Wilbraham-Gibbs phenomenon*. (i) Suppose that f is a square wave given by

f(x) =

{

1 0 < x < π
0 π < x < 2π .

Sketch f and show that f(x) =
1

2
+

2

π

∞
∑

n=1

sin(2n− 1)x

2n− 1
.

(ii) Now define the partial sum of this series as SN (x) =
1

2
+

2

π

N
∑

n=1

sin(2n− 1)x

2n− 1
,

and find the following expression SN (x) =
1

2
+
1

π

∫ x

0

sin 2Nt

sin t
dt . [Hint: consider

N
∑

n=1

cos(2n−1)x .]

(iii) Deduce that SN (x) has extrema at x = mπ/2N, m = 1, 2, ...2N − 1, 2N + 1, ..., (i.e. all integer m except
m = 2kN , k integer) and that the height of the first maximum for large N is approximately

SN (
π

2N
) =

1

2
+

1

π

∫ π

0

sinudu

u
(≃ 1·089) .

Comment on the accuracy of Fourier series at discontinuities. (This question takes you through some important
steps which are used in the proof of Fourier’s theorem - refer, for example, to chapter 14 of Jeffreys & Jeffreys. Henry
Wilbraham was a fellow of Trinity who wrote a paper (when he was 22) deriving this result 50 years before Gibbs,
after whom it is commonly named.)
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Sturm-Liouville theory

6. Eigenfunctions and eigenvalues. Prove that the boundary value problem

y
′′

+ λy = 0; y(0) = 0, y(1) + y
′

(1) = 0,

has infinitely many eigenvalues λ1 < λ2 < λ3... Indicate roughly the behaviour of λn as n → ∞.

7. Recasting in Sturm-Liouville form. Express the following equations in Sturm-Liouville form:

(i) (1− x2)y
′′

− 2xy
′

+ n(n+ 1)y = 0 , (ii) x(x− 1)y
′′

+ [(1 + a+ b)x− c]y
′

+ aby = 0 ,

where n, a, b, and c are constants.

(iii) Find the eigenvalues and eigenfunctions for

y
′′

+ 4y
′

+ (4 + λ)y = 0, y(0) = y(1) = 0.

What is the orthogonality relation for these eigenfunctions?

8. Bessel’s equation. (i) Show that the eigenvalues of the Sturm-Liouville problem

d

dx
(x

du

dx
) + λxu = 0 , 0 < x < 1 ,

with u(x) bounded as x → 0 and u(1) = 0, are λ = j2n (n = 1, 2, ...), where the jn are the zeros of the Bessel function
J0(z), arranged in ascending order. [Note: Bessel’s equation of order zero is d

dz
(z dy

dz
) + zy = 0 , (z > 0), which you

may assume has one solution J0(z) defined as

J0(z) =
∞
∑

m=0

(−1)m
z2m

22m(m!)2

and a second solution that is the sum of a regular function and J0(z) log z.]

(ii) Using integration by parts on the differential equations for J0(αx) and J0(βx), show that

∫ 1

0

J0(αx)J0(βx)xdx =
βJ0(α)J

′

0(β)− αJ0(β)J
′

0(α)

α2 − β2
(β 6= α)

∫ 1

0

J0(jnx)J0(jmx)xdx = 0 , (n 6= m) ,

∫ 1

0

[J0(jnx)]
2xdx =

1

2
[J

′

0(jn)]
2. [Hint: Consider β = jn + ǫ as ǫ → 0.]

(iii) Assume that the inhomogeneous equation

d

dx
(x

du

dx
) + λ̃xu = xf(x),

where λ̃ is not an eigenvalue, has a unique solution such that u(x) is bounded as x → 0 and u(1) = 0. Assuming also
that f(x) satisfies the same boundary conditions as u and the completeness of the eigenfunctions J0(jnx), obtain the
eigenfunction expansion of u.

9. Higher order self-adjoint form*. Show that the fourth-order differential operator

L =
4

∑

r=0

pr(x)
dr

dxr
,

where the pr(x) are real functions, is self-adjoint if and only if p3 = 2p
′

4, p1 = p
′

2 − p
′′′

4 .

Considering a specific example, show that the boundary value problem

−y
′′′′

+ λy = 0; y(0) = y(1) = y
′

(0) = y
′

(1) = 0

has infinitely many eigenvalues λ1 < λ2 < λ3... . Indicate roughly the behaviour of λn as n → ∞.

†If you find any errors in the Methods Examples sheets, please inform your supervisor or email c.p.caulfield@bpi.cam.ac.uk.


