Comments and corrections to acl20@damtp.cam.ac.uk. Sheet with commentary available to supervisors.

1. Recall from lectures $c_n(\theta) = \cos(2\pi n \theta / L)$ and $s_n(\theta) = \sin(2\pi n \theta / L)$. Verify the orthogonality relations
\[\langle c_n, c_m \rangle = \langle s_n, s_m \rangle = \frac{1}{L} \delta_{mn}, \quad \langle c_n, s_m \rangle = \delta_{n,m} - \frac{1}{L} \delta_{mn}, \quad \langle c_n, s_m \rangle = 0 \quad m, n \geq 1 \]
where \(\langle f, g \rangle = \int_0^L f(\theta)g(\theta)d\theta \). This confirms \(\{1, c_n, s_n\}_{n=1}^\infty \) are orthogonal, as stated in lectures.

2. Consider 2-periodic function \(f : \mathbb{R} \to \mathbb{R} \) with \(f(\theta) = (1 - \theta^2)^2 \) when \(\theta \in [-1, 1] \). Show that it has Fourier series
\[f(\theta) \sim \frac{8}{15} + \frac{48}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4} \cos(n\pi \theta). \]
Can we replace ‘~’ with ‘=’ in this case? Sketch the graph of \(f \) and comment on the number of continuous derivatives it has and the relation to the decay of the Fourier coefficients.

3. Suppose \(f(\theta) = \theta^2 \) when \(\theta \in [0, \pi] \).
 (i) Construct (a) the Sine series for \(f \) and (b) the Cosine series for \(f \), each having period 2\(\pi \). Sketch the 2\(\pi \)-periodic functions obtained in (a) and (b) in the range \(\theta \in [-\pi, \pi] \).
 (ii) If the series in (a) and (b) are formally differentiated term-by-term, are the resulting series related to the Fourier series for 2\(\pi \)-periodic functions \(g, h : \mathbb{R} \to \mathbb{R} \) for which \(g(\theta) = 2\theta \) and \(h(\theta) = 2\theta |\theta| \) when \(\theta \in [-\pi, \pi] \)?

4. Find the complex Fourier series for the 2\(\pi \)-periodic function \(f : \mathbb{R} \to \mathbb{R} \) for which \(f(\theta) = e^{i\theta} \) when \(\theta \in [-\pi, \pi] \). Using Parseval’s theorem, deduce that
\[\sum_{n=1}^{\infty} \frac{1}{1 + n^2} = \frac{1}{2} \left(\pi \coth \pi - 1 \right). \]
Obtain the same result by evaluating the complex Fourier series at an appropriate point in \([-\pi, \pi]\).

5. We say a sequence \(\{r_n\}_{n \in \mathbb{Z}} \) decays rapidly if \(|n|^k r_n \to 0 \) as \(|n| \to \infty \) for every \(k \geq 0 \).
 (i) Let \(f \) be a smooth, 2\(\pi \)-periodic function. Show that the complex Fourier coefficients \(\{\hat{f}_n\} \) decay rapidly.
 (ii) Construct an \(\mathbb{L} \)-periodic function with rapidly decaying, non-zero complex Fourier coefficients.

6. By considering the Sturm-Liouville problem for \(y = y(x) \)
\[\begin{cases} y'' + \lambda y = 0, & 0 < x < L, \\ y'(0) = 0, \\ y'(L) = 0, \end{cases} \]
re-derive the Cosine series representation for any \(f \in C^2[0, L] \) with \(f'(0) = f'(L) = 0 \).

7. Prove that the boundary value problem for \(y = y(x) \)
\[\begin{cases} y'' + \lambda y = 0, & 0 < x < 1, \\ y(0) = 0, \\ y(1) + y'(1) = 0, \end{cases} \]
has infinitely many eigenvalues \(\lambda_1 < \lambda_2 < \lambda_3 < \cdots \) and indicate roughly the behaviour of \(\lambda_n \) as \(n \to \infty \).

8. Express the following eigenvalue problems as Sturm-Liouville problems on \([-1, 1]\) and \([0, 1]\), respectively:
 (i) \((1 - x^2) y'' - 2xy' + \lambda y = 0 \), \(x(1-x)y'' - (ax-b)y' + \lambda y = 0 \),
where \(a > b > 0 \) are constant and \(\lambda \) is constant. Are either of these problems singular?
 (iii) Find the eigenvalues and eigenfunctions of the boundary value problem for \(y = y(x) \)
\[\begin{cases} y'' + (4+\lambda)y = 0, & 0 < x < 1, \\ y(0) = 0, \\ y(1) = 0. \end{cases} \]
What is the orthogonality relation for these eigenfunctions?
9. Define the functions $q_n(x) = \frac{1}{2 \pi} \left(\frac{d}{dx} \right)^n \left(x^2 - 1 \right)^n$ for $n = 1, 2, \ldots$

(a) Show that $q_n(x)$ is a polynomial of degree n;
(b) Deduce that $q_n = P_n$;
(c) $q_n(1) = 1$ for all n;
(d) q_n satisfies Legendre’s equation.

Hint: for (a)(iii) show $u_n = (x^2 - 1)^n$ satisfies $(x^2 - 1)u_n' - 2xu_n = 0$ and differentiate further.

10. Recall from lectures that if $u_n(x) = J_m(xr)$, where J_m is the mth order Bessel function of the 1st kind, then

$$\frac{d}{dx} \left(r \frac{dy_n}{dr} \right) + \frac{m^2}{r} y_n = \alpha^2 r y_n, \quad r \in (0, 1).$$

Show that if $y_\beta(x) = J_m(\beta x)$ then $[r(y_\alpha y_\beta' - y_\beta y_\alpha')]' = (\alpha^2 - \beta^2) r y_\alpha y_\beta$. Deduce that

$$\int_0^1 J_m(\alpha x) J_m(\beta x) r \, dx = \frac{\beta J_m(\alpha) J_m'(\beta) - \alpha J_m(\beta) J_m'(\alpha)}{\alpha^2 - \beta^2}, \quad \alpha \neq \beta.$$

Use this result to show that $\int_0^1 J_m(j_{mk} x) J_m(j_{mk} x) r \, dx = \frac{1}{2} [J_{m}(j_{mk})]^2 \delta_{kl}$, where $J_m(j_{mk}) = 0$, $k = 1, 2, \ldots$

Additional problems

These questions should not be attempted at the expense of earlier ones.

11. Let f be the 2π-periodic square wave for which $f(\theta) = 1$ on $[0, \pi)$ and $f(\theta) = 0$ on $[\pi, 2\pi)$.

(i) Sketch the graph of f and show that

$$f(\theta) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)\theta}{2n-1}.$$

(ii) Let $S_N f$ denote the partial Fourier series for f. By considering $\sum_{n=1}^{N} \cos[(2n-1)\theta]$, or otherwise, show

$$(S_N f)(\theta) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\theta} \frac{\sin(2N\phi)}{\sin \phi} \, d\phi.$$

(iii) Deduce that $(S_N f)(\theta)$ has a local extrema at $\theta = 2\pi m / 2N$, $m \in \mathbb{Z} \setminus 2N\mathbb{Z}$ and that for large N

$$(S_N f) \left(\frac{\pi}{2N} \right) \approx \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\pi/2} \frac{\sin u}{u} \, du = \frac{1}{2} + \int_{0}^{\pi/2} \frac{\sin u}{u(\pi - u)} \, du \geq 1.08.$$

Hint for lower bound: $\sin u \geq u - u^3/3!$. Comment on the accuracy of partial Fourier series at discontinuities.

12. Set $V = \{ y \in C^2[a, b] : y(a) = y(b) = 0 \}$ (i.e. Dirichlet boundary conditions) and let $L = \frac{1}{w} \left[-\frac{d}{dx} \left(p \frac{dy}{dx} \right) + q \right]$ be a Sturm-Liouville operator with p, q, w smooth and $p, w > 0$ on $[a, b]$. Consider the Rayleigh quotient

$$R[y] = \frac{\int_{a}^{b} \left(p (y')^2 + q y^2 \right) \, dx}{\int_{a}^{b} w y^2 \, dx}, \quad y \in V.$$

(a) By considering $\langle Ly, y \rangle_{w^*}$ show that if $y \in V$ satisfies $Ly = \lambda y$ then $\lambda = R[y]$.
(b) Let $\lambda_1 = \inf_{y \in V \setminus \{0\}} R[y]$ and suppose that there exists a $y_1 \in V$ such that $R[y_1] = \lambda_1$. If we set

$$F(\epsilon) = R[y_1 + \epsilon \eta],$$

where $\eta \in V$, explain why $F'(0) = 0$. Hence show that $L y_1 = \lambda_1 y_1$. Comment on this result in relation to finding the smallest eigenvalue of L. How might you try to find the second smallest? (Hint: orthogonality).
(c) Take $[a, b] = [0, 1]$ and $L = -d^2/dx^2$. Compute $R[y]$ where $y(x) = x(1-x)$ and deduce $\lambda_{\text{min}} = \pi^2 \leq 10$.

You may assume that if $\int_{a}^{b} f \eta \, dx = 0$ for all $\eta \in V$ then $f = 0$.