Mathematical Tripos Part IB

Methods, Example Sheet 2

Comments and corrections to acla2@damtp.cam.ac.uk. Sheet with commentary available to supervisors.

1. The function $\varphi=\varphi(x, y, z)$ satisfies the Laplace equation $\Delta \varphi=0$ on the cuboid $(x, y, z) \in(0, a) \times(0, b) \times(0, c)$, such that $\varphi=1$ on the side $z=0$ and $\varphi=0$ on all other sides. Show that

$$
\varphi(x, y, z)=\frac{16}{\pi^{2}} \sum_{p, q=0}^{\infty} \frac{\sinh \left[\ell_{p, q}(c-z)\right] \sin [(2 p+1) \pi x / a] \sin [(2 q+1) \pi y / b]}{(2 p+1)(2 q+1) \sinh \left(c \ell_{p, q}\right)}
$$

where $\ell_{p, q}^{2}=(2 p+1)^{2} \pi^{2} / a^{2}+(2 q+1)^{2} \pi^{2} / b^{2}$. Discuss the behaviour of the solution as $c \rightarrow \infty$.
2. The function $\varphi=\varphi(r, \theta)$ satisfies the Laplace equation $\Delta \varphi=0$ on the unit disc $(r, \theta) \in[0,1) \times[0,2 \pi)$ such that $\varphi(1, \theta)=\pi / 2$ on $0 \leq \theta<\pi$ and $\varphi(1, \theta)=-\pi / 2$ on $\pi \leq \theta<2 \pi$. Show that

$$
\varphi(r, \theta)=2 \sum_{n \text { odd }} \frac{r^{n} \sin (n \theta)}{n}
$$

Sum the series using the substitution $z=r e^{\mathrm{i} \theta}$. Your solution can then be interpreted geometrically as the angle between the linear to the two points on the boundary where the data jumps.
3. The function $\varphi=\varphi(r, \theta)$ satisfies the Laplace equation $\Delta \varphi=0$ on the unit ball $(r, \theta, \phi) \in[0,1) \times[0, \pi] \times[0,2 \pi)$ such that $\varphi(1, \theta)=1$ on $0 \leq \theta<\pi / 2$ and $\varphi(1, \theta)=-1$ on $\pi / 2 \leq \theta \leq \pi$. Show that

$$
\varphi(r, \theta)=\sum_{n=0}^{\infty} \alpha_{n} r^{n} P_{n}(\cos \theta)
$$

where α_{n} are constants you should determine in terms of the Legendre polynomials. It will be useful to note that $P_{n+1}^{\prime}(z)-P_{n-1}^{\prime}(z)=(2 n+1) P_{n}(z)$ and $\int_{-1}^{1} P_{n}(z) P_{m}(z) \mathrm{d} z=2 \delta_{m n} /(2 n+1)$.
4. A uniform string of mass per unit length μ and tension τ undergoes small transverse vibrations of amplitude $y=y(x, t)$. The string is fixed at $x=0$ and $x=L$ and satisfies the initial conditions

$$
y(x, 0)=0, \quad \frac{\partial y}{\partial t}(x, 0)=\frac{4 V}{L^{2}} x(L-x) \quad \text { for } 0<x<L
$$

Using the fact that y satisfies the wave equation with speed c where $c^{2}=\tau / \mu$, find the amplitudes of the normal modes and deduce the kinetic and potential energies of the string at time t. Hence show that

$$
\sum_{n \text { odd }} \frac{1}{n^{6}}=\frac{\pi^{6}}{960}
$$

5. The displacement $y=y(x, t)$ of a uniform string stretched between $x=0$ and $x=L$ satisfies the wave equation with the boundary conditions $y(0, t)=y(L, t)=0$. For $t<0$ the string oscillates in the fundamental mode $y(x, t)=A \sin (\pi x / L) \sin (\pi c t / L)$. A musician strikes the midpoint of the string impulsively at time $t=0$ so that the change in $\partial y / \partial t$ at $t=0$ is $\lambda \delta\left(x-\frac{1}{2} L\right)$. Find $y=y(x, t)$ for $t>0$.
6. Consider a uniform stretched string of length L, mass per unit length μ, tension $\tau=\mu c^{2}$ and ends fixed.
(i) The string undergoes transverse oscillations in a resistive medium that produces a resistive force per unit length of $-2 k \mu y_{t}$, where $y=y(x, t)$ is the transverse displacement and $k=\pi c / L$. Derive the equation of motion

$$
\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}-\frac{2 k}{c^{2}} \frac{\partial y}{\partial t}
$$

Find $y=y(x, t)$ if $y(x, 0)=A \sin (\pi x / L)$ and $y_{t}(x, 0)=0$.
(ii) If an extra transverse force $F \sin (\pi x / L) \cos (\pi c t / L)$ per unit length is applied to the string, find the associated particular integral. Discuss the behaviour of the full solution as $t \rightarrow \infty$.
7. A string of uniform density is stretched along the x-axis under tension τ. It undergoes small transverse oscillations so that the displacement $y=y(x, t)$ satisfies the wave equation.
(i) Show that if a mass M is fixed to the string at $x=0$ then its equation of motion can be written

$$
\left.M \frac{\partial^{2} y}{\partial t^{2}}\right|_{x=0}=\tau\left[\frac{\partial y}{\partial x}\right]_{x=0^{-}}^{x=0^{+}}
$$

(ii) A wave of the form $(x, t) \mapsto \exp [\mathrm{i} \omega(t-x / c)]$ is incident from $x \rightarrow-\infty$ giving rise to a solution of the form

$$
y(x, t)= \begin{cases}e^{\mathrm{i} \omega(t-x / c)}+R e^{\mathrm{i} \omega(t+x / c)}, & x<0 \\ T e^{\mathrm{i} \omega(t-x / c)}, & x>0\end{cases}
$$

Using (\star) and an appropriate continuity condition at $x=0$, find expressions for $T=T(\lambda)$ and $R=R(\lambda)$ where $\lambda=M \omega c / \tau$. Discuss the limiting behaviour of R and T when λ is large or small.
8. Here we solve the heat equation on an interval with non-zero boundary data. Let $\varphi=\varphi(x, t)$ satisfy

$$
\left\{\begin{aligned}
\varphi_{t}-\kappa \varphi_{x x} & =0, & & (x, t) \in(0,1) \times(0, \infty) \\
\varphi(x, 0) & =x^{2}, & & x \in(0,1) \\
\varphi(0, t) & =0, & & t>0 \\
\varphi(1, t) & =1, & & t>0
\end{aligned}\right.
$$

By considering a suitable function of the form $\Phi(x, t)=\varphi(x, t)-(A x+B)$ with A, B constant, reduce the problem to one for Φ with homogeneous boundary data. Hence find $\varphi(x, t)$ and discuss its behaviour as $t \rightarrow \infty$.

Additional problems

These questions should not be attempted at the expense of earlier ones.
9. Let $f=f(\theta)$ be 2π-periodic function and consider the periodic initial value problem for the heat equation $\varphi_{t}=\varphi_{\theta \theta}$ with $\varphi(\theta, 0)=f(\theta)$ and $\varphi(\theta+2 \pi, t)=\varphi(\theta, t)$ for each (θ, t). Using an appropriate Fourier series, solve for φ and write it in the form $\varphi(\theta, t)=\int_{0}^{2 \pi} \vartheta_{t}(\theta-\phi) f(\phi) \mathrm{d} \phi$ where $\vartheta_{t}(\theta)$ is a function you should determine.
10. Let $\Omega \subset \mathbf{R}^{3}$ be a bounded domain and $(\mathbf{x}, t) \in \Omega \times(0, \infty)$. We will be concerned with the following initial-boundary value problems for the heat and wave equations, respectively:

$$
(A)\left\{\begin{array} { r l }
{ \varphi _ { t } - \kappa \Delta \varphi = 0 , } & { \text { in } \Omega \times (0 , \infty) } \\
{ \varphi = f , } & { \text { on } \Omega \times \{ t = 0 \} } \\
{ \varphi = 0 , } & { } \\
{ \text { on } \partial \Omega \times [0 , \infty) }
\end{array} \quad (B) \quad \left\{\begin{array}{rl}
\varphi_{t t}-c^{2} \Delta \varphi=0, & \\
\varphi=g, & \text { in } \Omega \times(0, \infty) \\
\varphi_{t}=h, & \\
\text { on } \Omega \times\{t=0\} \\
\varphi=0, & \\
\text { on } \partial \Omega \times[0, \infty)
\end{array}\right.\right.
$$

You may assume the following: there is a collection $\left\{\left(\psi_{n}, \lambda_{n}\right)\right\}_{n=1}^{\infty}$ of real eigenfunction-eigenvalue pairs such that (a) $-\Delta \psi_{n}=\lambda_{n} \psi_{n}$ in Ω; (b) $\psi_{n}=0$ on $\partial \Omega$; (c) each eigenvalue has finite multiplicity; (d) $\left\{\psi_{n}\right\}$ are complete on Ω. The latter means for $f: \Omega \rightarrow \mathbf{R}$ satisfying $f=0$ on $\partial \Omega$ we can write $f=\sum_{n} \alpha_{n} \psi_{n}$ for some $\left\{\alpha_{n}\right\}$.
(i) Show that $\lambda_{n}>0$ for each n and $\int_{\Omega} \psi_{n} \psi_{m} \mathrm{~d} V=0$ for $\lambda_{n} \neq \lambda_{m}$.
(ii) Explain why we can assume, without loss of generality, that $\int_{\Omega} \psi_{n} \psi_{m} \mathrm{~d} V=0$ for $n \neq m$.
(iii) Using separation of variables, show that the solution to (A) is given by

$$
\varphi(\mathbf{x}, t)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \kappa t} \psi_{n}(\mathbf{x}) \quad \text { where } \quad \alpha_{n}=\frac{\int_{\Omega} f \psi_{n} \mathrm{~d} V}{\int_{\Omega} \psi_{n}^{2} \mathrm{~d} V}
$$

Explain why this might be formally interpreted as $\varphi(\mathbf{x}, t)=e^{\kappa t \Delta} \varphi(\mathbf{x}, 0)$ where $e^{\kappa t \Delta}=\sum_{p=0}^{\infty} \frac{(\kappa t)^{p}}{p!} \Delta^{p}$.
(iv) Solve (B), again using separation of variables. Relate your answer to the formal expression

$$
\varphi(\mathbf{x}, t)=\frac{\sin (c t \sqrt{-\Delta})}{c \sqrt{-\Delta}} \varphi_{t}(\mathbf{x}, 0)+\cos (c t \sqrt{-\Delta}) \varphi(\mathbf{x}, 0)
$$

