Mathematical Tripos Part IB
Methods, Example Sheet 2

Comments and corrections to acla2@damtp.cam.ac.uk. Sheet with commentary available to supervisors.

1. The function $\varphi = \varphi(x, y, z)$ satisfies the Laplace equation $\Delta \varphi = 0$ on the cuboid $(x, y, z) \in (0, a) \times (0, b) \times (0, c)$, such that $\varphi = 1$ on the side $z = 0$ and $\varphi = 0$ on all other sides. Show that

$$\varphi(x, y, z) = \frac{16}{\pi^2} \sum_{p,q=0}^{\infty} \frac{\sin[(\varphi_{p,q}(c-z)\sin[(2p+1)\pi x/a]\sin[(2q+1)\pi y/b]}{(2p+1)(2q+1)\sinh(\varphi_{p,q})}$$

where $\varphi_{p,q} = (2p+1)^2\pi^2/a^2 + (2q+1)^2\pi^2/b^2$. Discuss the behaviour of the solution as $c \to \infty$.

2. The function $\varphi = \varphi(r, \theta)$ satisfies the Laplace equation $\Delta \varphi = 0$ on the unit disc $(r, \theta) \in [0, 1) \times [0, 2\pi)$ such that $\varphi(1, \theta) = \pi/2$ on $0 \leq \theta < \pi$ and $\varphi(1, \theta) = -\pi/2$ on $\pi \leq \theta < 2\pi$. Show that

$$\varphi(r, \theta) = 2 \sum_{n \text{ odd}} \frac{r^n \sin(n\theta)}{n}.$$

Sum the series using the substitution $z = r\cos \theta$. Your solution can then be interpreted geometrically as the angle between the linear to the two points on the boundary where the data jumps.

3. The function $\varphi = \varphi(r, \theta)$ satisfies the Laplace equation $\Delta \varphi = 0$ on the unit ball $(r, \theta, \phi) \in [0, 1) \times [0, \pi] \times [0, 2\pi)$ such that $\varphi(1, \theta, \phi) = \pi/2$ on $0 \leq \theta < \pi/2$ and $\varphi(1, \theta, \phi) = -\pi/2$ on $\pi/2 \leq \theta \leq \pi$. Show that

$$\varphi(r, \theta, \phi) = \sum_{n=0}^{\infty} a_n r^n P_n(\cos \theta)$$

where a_n are constants you should determine in terms of the Legendre polynomials. It will be useful to note that $P_{n+1}'(z) - P_{n-1}'(z) = (2n+1)P_n(z)$ and $\int_1^1 P_n(z)P_m(z)dz = 2\delta_{mn}/(2n+1)$.

4. A uniform string of mass per unit length μ and tension τ undergoes small transverse vibrations of amplitude $y = y(x, t)$. The string is fixed at $x = 0$ and $x = L$ and satisfies the initial conditions

$$y(x, 0) = 0, \quad \frac{\partial y}{\partial t}(x, 0) = \frac{4V}{L^2}x(L-x) \quad \text{for } 0 < x < L.$$

Using the fact that y satisfies the wave equation with speed c where $c^2 = \tau/\mu$, find the amplitudes of the normal modes and deduce the kinetic and potential energies of the string at time t. Hence show that

$$\sum_{n \text{ odd}} \frac{1}{n^6} = \frac{\pi^6}{960}.$$

5. The displacement $y = y(x, t)$ of a uniform string stretched between $x = 0$ and $x = L$ satisfies the wave equation with the boundary conditions $y(0, t) = y(L, t) = 0$. For $t < 0$ the string oscillates in the fundamental mode $y(x, t) = A \sin(\pi x/L) \sin(\pi ct/L)$. A musician strikes the midpoint of the string impulsively at time $t = 0$ so that the change in $\partial y/\partial t$ at $t = 0$ is $\lambda \delta(x - 1/2)$. Find $y = y(x, t)$ for $t > 0$.

6. Consider a uniform stretched string of length L, mass per unit length μ, tension $\tau = \mu c^2$ and ends fixed.

 (i) The string undergoes transverse oscillations in a resistive medium that produces a resistive force per unit length of $-2k\gamma y$, where $y = y(x, t)$ is the transverse displacement and $k = \pi c/L$. Derive the equation of motion

 $$\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} + \frac{2k}{c^2} \frac{\partial y}{\partial t}.$$

 Find $y - y(x, t)$ if $y(x, 0) = A \sin(\pi x/L)$ and $y_t(x, 0) = 0$.

 (ii) If an extra transverse force $F \sin(\pi x/L) \cos(\pi ct/L)$ per unit length is applied to the string, find the associated particular integral. Discuss the behaviour of the full solution as $t \to \infty$.

1
7. A string of uniform density is stretched along the x-axis under tension \(\tau \). It undergoes small transverse oscillations so that the displacement \(y = y(x, t) \) satisfies the wave equation.

(i) Show that if a mass \(M \) is fixed to the string at \(x = 0 \) then its equation of motion can be written

\[
M \frac{\partial^2 y}{\partial t^2} \bigg|_{x=0} = \tau \left[\frac{\partial y}{\partial x} \right]_{x=0}^+.
\]

(ii) A wave of the form \((x, t) \mapsto \exp[i \omega(t - x/c)] \) is incident from \(x \to -\infty \) giving rise to a solution of the form

\[
y(x, t) = \begin{cases}
 e^{i \omega(t-x/c)} + R e^{i \omega(t+x/c)}, & x < 0, \\
 T e^{i \omega(t-x/c)}, & x > 0.
\end{cases}
\]

Using (i) and an appropriate continuity condition at \(x = 0 \), find expressions for \(T = T(\lambda) \) and \(R = R(\lambda) \) where \(\lambda = M \omega c/\tau \). Discuss the limiting behaviour of \(R \) and \(T \) when \(\lambda \) is large or small.

8. Here we solve the heat equation on an interval with non-zero boundary data. Let \(\varphi = \varphi(x, t) \) satisfy

\[
\begin{cases}
 \varphi_t - \kappa \varphi_{xx} = 0, & (x, t) \in (0, 1) \times (0, \infty), \\
 \varphi(x, 0) = x^2, & x \in [0, 1), \\
 \varphi(0, t) = 0, & t > 0, \\
 \varphi(1, t) = 1, & t > 0.
\end{cases}
\]

By considering a suitable function of the form \(\Phi(x, t) = \varphi(x, t) - (Ax + B) \) with \(A, B \) constant, reduce the problem to one for \(\Phi \) with homogeneous boundary data. Hence find \(\varphi(x, t) \) and discuss its behaviour as \(t \to \infty \).

Additional problems

These questions should not be attempted at the expense of earlier ones.

9. Let \(f = f(\theta) \) be 2\(\pi \)-periodic function and consider the periodic initial value problem for the heat equation \(\varphi_t = \varphi_{\theta\theta} \) with \(\varphi(\theta, 0) = f(\theta) \) and \(\varphi(\theta + 2\pi, t) = \varphi(\theta, t) \) for each \((\theta, t) \). Using an appropriate Fourier series, solve for \(\varphi \) and write it in the form \(\varphi(\theta, t) = \int_0^{2\pi} \vartheta_t(\theta - \phi) f(\phi) \, d\phi \) where \(\vartheta_t(\theta) \) is a function you should determine.

10. Let \(\Omega \subseteq \mathbb{R}^3 \) be a bounded domain and \((x, t) \in \Omega \times (0, \infty) \). We will be concerned with the following initial-boundary problems for the heat and wave equations, respectively:

\[
(A) \quad \begin{cases}
 \varphi_t - \kappa \Delta \varphi = 0, & \text{in } \Omega \times (0, \infty) \\
 \varphi = f, & \text{on } \Omega \times \{t = 0\} \\
 \varphi = 0, & \text{on } \partial \Omega \times (0, \infty)
\end{cases} \quad \text{and} \quad \begin{cases}
 \varphi_{tt} - \Delta \varphi = 0, & \text{in } \Omega \times (0, \infty) \\
 \varphi = g, & \text{on } \Omega \times \{t = 0\} \\
 \varphi_t = h, & \text{on } \Omega \times \{t = 0\} \\
 \varphi = 0, & \text{on } \partial \Omega \times (0, \infty)
\end{cases}
\]

You may assume the following: there is a collection \(\{(\psi_n, \lambda_n)\}_{n=1}^\infty \) of real eigenfunction-eigenvalue pairs such that (a) \(-\Delta \psi_n = \lambda_n \psi_n \) in \(\Omega \); (b) \(\psi_n = 0 \) on \(\partial \Omega \); (c) each eigenvalue has finite multiplicity; (d) \(\{\psi_n\} \) are complete on \(\Omega \). The latter means for \(f : \Omega \to \mathbb{R} \) satisfying \(f = 0 \) on \(\partial \Omega \) we can write \(f = \sum_n \alpha_n \psi_n \) for some \(\{\alpha_n\} \).

(i) Show that \(\lambda_n > 0 \) for each \(n \) and \(\int_\Omega \psi_n \psi_m \, dV = 0 \) for \(\lambda_n \neq \lambda_m \).

(ii) Explain why we can assume, without loss of generality, that \(\int_\Omega \psi_n \, dV = 0 \) for \(n \neq m \).

(iii) Using separation of variables, show that the solution to \((A)\) is given by

\[
\varphi(x, t) = \sum_{n=1}^\infty \alpha_n e^{-\lambda_n \kappa t} \psi_n(x) \quad \text{where} \quad \alpha_n = \frac{\int_\Omega f \psi_n \, dV}{\int_\Omega \psi_n^2 \, dV}.
\]

Explain why this might be formally interpreted as \(\varphi(x, t) = e^{\kappa t} \varphi(0, x) \) where \(e^{\kappa t} = \sum_{n=0}^\infty \frac{(\kappa t)^n}{n!} \Delta^n \).

(iv) Solve \((B)\), again using separation of variables. Relate your answer to the formal expression

\[
\varphi(x, t) = \frac{\sin(c \sqrt{-\Delta})}{c \sqrt{-\Delta}} \varphi_t(x, 0) + \cos(c \sqrt{-\Delta}) \varphi(x, 0).
\]