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Mathematical Tripos Part IB Michaelmas term 2022 Professor E.P.S. Shellard

METHODS — EXAMPLES III

Green’s functions

1. Initial value problem. The reading θ(t) of an ammeter satisfies

θ̈ + 2pθ̇ + (p2 + q2)θ = f(t) ,

where p, q are constants with p > 0. The ammeter is set so that θ and θ̇ are zero when t = 0. Assuming q 6= 0, show
by constructing the Green’s function that

θ(t) =
1

q

∫ t

0

e−p(t−τ) sin[q(t− τ)]f(τ)dτ .

Derive the same result using Fourier transforms, showing that the transfer function for this system is

R̃(ω) =
1

2qi

[

1

(iω + p− qi)
− 1

(iω + p+ qi)

]

.

2. Boundary value problem. Obtain the Green’s function G(x, ξ) satisfying

d2G

dx2
− λ2G = δ(x− ξ) , 0 ≤ x ≤ 1 , 0 ≤ ξ ≤ 1 .

where λ is real, subject to the boundary conditions G(0, ξ) = G(1, ξ) = 0. Show that the solution to the equation

d2y

dx2
− λ2y = f(x), subject to the same boundary conditions is

y = − 1

λ sinhλ

{

sinhλx

∫ 1

x

f(ξ) sinhλ(1− ξ)dξ + sinhλ(1− x)

∫ x

0

f(ξ) sinhλξdξ

}

.

3. Finite asymptotics. A linear differential operator is defined by

Lxy = − 1

x2
d

dx

(

x2
dy

dx

)

+ y .

By writing y = z/x or otherwise, find those solutions of Lxy = 0 which are either (a) bounded as x→ 0, or
(b) bounded as x→ ∞. Find the Green’s function G(x, a) satisfying

LxG(x, a) = δ(x− a) ,

and both conditions (a) and (b). Use G(x, a) to solve (subject to conditions (a) and (b))

Lxy(x) =

{

1, for 0 ≤ x ≤ R ,
0, for x > R .

Show that the solution has the form, for suitable constants A,B

y(x) =

{

1 +Ax−1sinhx , for 0 ≤ x ≤ R ,
Bx−1e−x , for x > R .

4. Higher order initial value problem*. Show that the Green’s function for the initial value problem (′ ≡ d
dt
)

y
′′′′

+ k2y
′′

= f(t) , y(0) = y′(0) = y′′(0) = y′′′(0) = 0 ,

is given by G(t, τ) =

{

0 , 0 < t < τ ,
k−2(t− τ)− k−3 sin k(t− τ) , t > τ .

Therefore, write down the integral form of the solution when f(t) = e−t and verify that this integral satisfies the
equation and the initial conditions.
[Hint: Make life easy by noting G(τ, τ) = 0 for an IVP Green’s function and so use the time invariance of the equation
to take G(t, τ) = f(t− τ) for t > τ .]
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The Dirac delta function

5. Delta function properties. The function φ(x) is monotone increasing in [a, b] and has a (simple) zero at x = c
(i.e. φ′(c) 6= 0) where a < c < b. Show that

∫ b

a

f(x)δ[φ(x)]dx =
f(c)

|φ′(c)| .

Show that the same formula applies if φ(x) is monotone decreasing and hence derive a formula for general φ(x)
provided the zeros are simple. Deduce that δ(at) = δ(t)/|a| for a 6= 0. Also establish that

∫ +∞

−∞

|x|δ(x2 − a2)dx = 1 .

6. Delta function derivative*. Show using polar coordinates that
∫ +∞

−∞

∫ +∞

−∞

f(x2 + y2)δ′(x2 + y2 − 1)δ(x2 − y2)dx dy = f(1)− f ′(1) .

Fourier transforms

7. Fourier transforms of functions of finite extent. Calculate the Fourier transforms of the following functions. All
are non-zero only on the interval |x| < c, and zero elsewhere.

f(x) = 1.
f(x) = eiax.
f(x) = sin(ax).
f(x) = cos(ax).

8. Functions with discontinuities. Let f(x) = e−x for 0 < x <∞, and f(x) = 0 for x < 0. Show that

f̃(k) =
1− ik

1 + k2
.

Show that the inverse Fourier transform of this Fourier transform f̃(k) takes the value of 1/2 at x = 0. (This is a
general property of Fourier transforms, analogously to Fourier series. Inversion for general x is really straightforward
with Complex Methods.)

9. Fourier transform of Gaussians. By using differentiation with respect to wavenumber k and the shift property,
calculate the Fourier transform of a Gaussian distribution with a peak at µ 6= 0, i.e. f(x) = exp[−n2(x− µ)2].
Now let µ = 0, and consider δn(x) = (n/

√
π)f(x). Sketch δn(x) and δ̃n(k) for small and large n. What is

∫∞

−∞
δn(x)dx? What is happening as n→ ∞?

10. Parseval’s relation for the discrete Fourier transform. Using the notation of the lecture notes, prove Parseval’s
relation for the DFT:

N−1
∑

m=0

|h(tm)|2 =
1

N

N−1
∑

n=0

|h̃d(fn)|2.

11. Parseval’s relation continued. By considering the the Fourier transform of the function f(x) = cos(x) for
|x| < π/2 and f(x) = 0 for |x| ≥ π/2, and the Fourier transform of its derivative, show that

∫ ∞

0

π2

4 cos2 t
(

π2

4 − t2
)2 dt =

∫ ∞

0

t2 cos2 t
(

π2

4 − t2
)2 dt =

π

4
.

12. Laplace’s equation. Show that the inverse Fourier transform of the function

f̃(k) =

{

ek − e−k, |k| ≤ 1,
0 |k| > 1,

is

f(x) =
2i

π(1 + x2)
(cosh 1 sinx− x cosx sinh 1).

Determine, by using Fourier transforms, the solution of Laplace’s equation in the infinite strip 0 ≤ y ≤ 1, i.e.

∇2ψ = 0; −∞ < x <∞, 0 < y < 1,

where ψ(x, 0) = f(x) the function given above, and ψ(x, 1) = 0 for −∞ < x <∞.
(This was a long tripos question (2004/4/II/15A) for Complex Methods on material now in the Methods schedule.)

†If you find any errors in the Methods Examples sheets, please inform your supervisor or email epss@damtp.cam.ac.uk.


