Green’s functions

1. **Initial value problem.** The reading \(\theta(t) \) of an ammeter satisfies

\[
\ddot{\theta} + 2p\dot{\theta} + (p^2 + q^2)\theta = f(t),
\]

where \(p, q \) are constants with \(p > 0 \). The ammeter is set so that \(\theta \) and \(\dot{\theta} \) are zero when \(t = 0 \). Assuming \(q \neq 0 \), show by constructing the Green’s function that

\[
\theta(t) = \frac{1}{q} \int_0^t e^{-p(t-\tau)} \sin[q(t-\tau)]f(\tau)d\tau.
\]

Derive the same result using Fourier transforms, showing that the transfer function for this system is

\[
\tilde{R}(\omega) = \frac{1}{2q} \left[\frac{1}{i\omega + p - qi} - \frac{1}{i\omega + p + qi} \right].
\]

2. **Boundary value problem.** Obtain the Green’s function \(G(x, \xi) \) satisfying

\[
\frac{d^2 G}{dx^2} - \lambda^2 G = \delta(x - \xi), \quad 0 \leq x \leq 1, \quad 0 \leq \xi \leq 1,
\]

where \(\lambda \) is real, subject to the boundary conditions \(G(0, \xi) = G(1, \xi) = 0 \). Show that the solution to the equation

\[
\frac{d^2 y}{dx^2} - \lambda^2 y = f(x), \quad \text{subject to the same boundary conditions is}
\]

\[
y = -\frac{1}{\lambda \sinh \lambda} \left\{ \sinh \lambda x \int_x^1 f(\xi) \sinh \lambda(1 - \xi)d\xi + \sinh \lambda(1 - x) \int_0^x f(\xi) \sinh \lambda \xi d\xi \right\}.
\]

3. **Finite asymptotics.** A linear differential operator is defined by

\[
L_x y = -\frac{1}{x^2} \frac{d}{dx} \left(x^2 \frac{dy}{dx} \right) + y.
\]

By writing \(y = z/x \) or otherwise, find those solutions of \(L_x y = 0 \) which are either (a) bounded as \(x \to 0 \), or (b) bounded as \(x \to \infty \). Find the Green’s function \(G(x, a) \) satisfying

\[
L_x G(x, a) = \delta(x - a),
\]

and both conditions (a) and (b). Use \(G(x, a) \) to solve (subject to conditions (a) and (b))

\[
L_x y(x) = \begin{cases} 1, & \text{for } 0 \leq x \leq R, \\ 0, & \text{for } x > R. \end{cases}
\]

Show that the solution has the form, for suitable constants \(A, B \)

\[
y(x) = \begin{cases} 1 + Ax^{-1}\sinh x, & \text{for } 0 \leq x \leq R, \\ Bx^{-1}e^{-x}, & \text{for } x > R. \end{cases}
\]

4. **Higher order initial value problem.** Show that the Green’s function for the initial value problem \((\equiv \frac{d}{dt}) \)

\[
y''' + k^2 y'' = f(t), \quad y(0) = y'(0) = y''(0) = y'''(0) = 0,
\]

is given by

\[
G(t, \tau) = \begin{cases} 0, & 0 < t < \tau, \\ k^{-2}(t-\tau) - k^{-3}\sin k(t-\tau), & t > \tau. \end{cases}
\]

Therefore, write down the integral form of the solution when \(f(t) = e^{-t} \) and verify that this integral satisfies the equation and the initial conditions.

[Hint: Make life easy by noting \(G(\tau, \tau) = 0 \) for an IVP Green’s function and so use the time invariance of the equation to take \(G(t, \tau) = f(t-\tau) \) for \(t > \tau \).]
The Dirac delta function

5. Delta function properties. The function \(\phi(x) \) is monotone increasing in \([a, b]\) and has a (simple) zero at \(x = c \) (i.e. \(\phi'(c) \neq 0 \)) where \(a < c < b \). Show that

\[
\int_a^b f(x)\delta(\phi(x))dx = \frac{f(c)}{|\phi'(c)|}.
\]

Show that the same formula applies if \(\phi(x) \) is monotone decreasing and hence derive a formula for general \(\phi(x) \) provided the zeros are simple. Deduce that \(\delta(at) = \delta(t)/|a| \) for \(a \neq 0 \). Also establish that

\[
\int_{-\infty}^{+\infty} |x|\delta(x^2 - a^2)dx = 1.
\]

6. Delta function derivative*. Show using polar coordinates that

\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x^2 + y^2)\delta'(x^2 + y^2 - 1)\delta(x^2 - y^2)dx dy = f(1) - f'(1).
\]

Fourier transforms

7. Fourier transforms of functions of finite extent. Calculate the Fourier transforms of the following functions. All are non-zero only on the interval \(|x| < c \), and zero elsewhere.

\[
\begin{align*}
 f(x) &= 1, \\
 f(x) &= e^{iax}, \\
 f(x) &= \sin(ax), \\
 f(x) &= \cos(ax).
\end{align*}
\]

8. Functions with discontinuities. Let \(f(x) = e^{-x} \) for \(0 < x < \infty \), and \(f(x) = 0 \) for \(x < 0 \). Show that

\[
\hat{f}(k) = \frac{1}{1 + k^2}.
\]

Show that the inverse Fourier transform of this Fourier transform \(\hat{f}(k) \) takes the value of \(1/2 \) at \(x = 0 \). (This is a general property of Fourier transforms, analogously to Fourier series. Inversion for general \(x \) is really straightforward with Complex Methods.)

9. Fourier transform of Gaussians. By using differentiation with respect to wavenumber \(k \) and the shift property, calculate the Fourier transform of a Gaussian distribution with a peak at \(\mu \neq 0 \), i.e. \(f(x) = \exp[-n^2(x - \mu)^2] \).

Now let \(\mu = 0 \), and consider \(\delta_n(x) = (n/\sqrt{\pi})f(x) \). Sketch \(\delta_n(x) \) and \(\hat{\delta}_n(k) \) for small and large \(n \). What is \(\int_{-\infty}^{+\infty} \delta_n(x)dx \)? What is happening as \(n \to \infty \)?

10. Parseval’s relation for the discrete Fourier transform. Using the notation of the lecture notes, prove Parseval’s relation for the DFT:

\[
\sum_{m=0}^{N-1} |h(t_m)|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |\hat{h}_d(f_n)|^2.
\]

11. Parseval’s relation continued. By considering the the Fourier transform of the function \(f(x) = \cos(x) \) for \(|x| < \pi/2 \) and \(f(x) = 0 \) for \(|x| \geq \pi/2 \), and the Fourier transform of its derivative, show that

\[
\int_{0}^{\infty} \frac{\pi^2 \cos^2 t}{(\pi^2 - t^2)^2} dt = \int_{0}^{\infty} \frac{t^2 \cos^2 t}{(\pi^2 - t^2)^2} dt = \frac{\pi}{4}.
\]

12. Laplace’s equation. Show that the inverse Fourier transform of the function

\[
\hat{f}(k) = \begin{cases}
 e^k - e^{-k}, & |k| \leq 1, \\
 0, & |k| > 1,
\end{cases}
\]

is

\[
f(x) = \frac{2i}{\pi(1 + x^2)}(\cosh 1 \sin x - x \cos x \sinh 1).
\]

Determine, by using Fourier transforms, the solution of Laplace’s equation in the infinite strip \(0 \leq y \leq 1 \), i.e.

\[
\nabla^2 \psi = 0; \quad -\infty < x < \infty, \quad 0 < y < 1,
\]

where \(\psi(x, 0) = f(x) \) the function given above, and \(\psi(x, 1) = 0 \) for \(-\infty < x < \infty \).

(This was a long tripos question (2004/4/II/15A) for Complex Methods on material now in the Methods schedule.)

1 If you find any errors in the Methods Examples sheets, please inform your supervisor or email epss@damtp.cam.ac.uk.