Mathematical Tripos Part IB
Michaelmas term 2020
Professor E.P.S. Shellard

METHODS — EXAMPLES IV

General properties of PDEs

1. Characteristics.
 (i) Find the characteristic curves of \(u_x + yu_y = 0 \). Hence find the solution of the problem with the boundary data \(u(0, y) = y^3 \).
 (ii) Solve for \(u \) which satisfies \(yu_x + xu_y = 0 \) with \(u(0, y) = e^{-y^2} \). In which region of the plane is the solution uniquely determined?
 (iii) Find \(u \) such that \(u_x + u_y + u = e^{x+2y} \), and \(u(x, 0) = 0 \).

2. Well-posedness.
 The backward diffusion equation may be defined as \(u_{xx} + u_t = 0 \).
 Consider a domain \(0 < x < \pi \), with \(u(0, t) = 0 = u(\pi, t) \), and \(u(x, 0) = U(x) \). Use the method of separation of variables to show that the solution is
 \[
 u(x, t) = \sum_{n=1}^{\infty} b_n \sin(nx) e^{n^2 t},
 \]
 where
 \[
 b_n = \frac{2}{\pi} \int_0^\pi U(x) \sin(nx) dx.
 \]
 Hence demonstrate that this problem is not well-posed.

3. Classification.
 (i) Determine the regions where Tricomi’s equation \(u_{xx} + xu_{yy} = 0 \) is of elliptic, parabolic and hyperbolic types. Derive its characteristics and canonical form in the hyperbolic region.
 (ii) Reduce the equation \(u_{xx} + yu_{yy} + \frac{1}{2} u_y = 0 \) to the simple canonical form \(u_{t\eta} = 0 \) in its hyperbolic region, and hence show that
 \[
 u = f(x + 2[-y]^{1/2}) + g(x - 2[-y]^{1/2}),
 \]
 where \(f \) and \(g \) are arbitrary functions.

Applications of Green’s functions

4. Cauchy problem in the half-plane for the Laplacian. Consider Laplace’s equation in the half-plane with prescribed boundary conditions at \(y = 0 \), i.e.
 \[
 \nabla^2 \psi = 0; \ -\infty < x < \infty, \ y \geq 0,
 \]
 where \(\psi(x, 0) = f(x) \) a known function, such that \(\psi \) tends to zero as \(y \to \infty \).
 (i) Find the Green’s function for this problem.
 (ii) Hence show that the solution is given by (another!) Poisson’s integral formula:
 \[
 \psi(x, y) = \frac{y}{\pi} \frac{f(\xi)}{(x - \xi)^2 + y^2} d\xi;
 \]
 (iii) Derive the same result by taking Fourier transforms with respect to \(x \) (assuming all transforms exist).
 (iv) Find (in closed form) the solution when \(f(x) = \psi_0, |x| < a \), and \(f(x) = 0 \) otherwise. Sketch this solution (a) for various \(y > 0 \) and (b) along \(x = \pm a \).

5. Diffusion equation with a boundary source. Consider the problem on the half-line:
 \[
 \theta_t - \theta_{xx} = f(x, t), 0 < x < \infty, 0 < t < \infty,
 \]
 with boundary and initial data \(\theta(0, t) = h(t), \theta(x, 0) = \Theta(x) \). By considering the variable \(V(x, t) = \theta(x, t) - h(t) \), and using the method of images, derive the general solution.
6. **Forced wave equation.**
An infinite string, at rest for \(t < 0 \), receives an instantaneous transverse blow at \(t = 0 \) which imparts an initial velocity of \(V \delta(x - x_0) \), where \(V \) is a constant. Derive the position of the string for \(t > 0 \).

7. **Forced wave equation: Method of images.**
A semi-infinite string, fixed for all time at zero at \(x = 0 \) and at rest for \(t < 0 \), receives an instantaneous transverse blow at \(t = 0 \) which imparts an initial velocity of \(V \delta(x - x_0) \), where \(V \) is a constant. Derive the position of the string for \(t > 0 \), and compare the solution to the infinite case in the previous question.

8. **Dirichlet Green’s function for the sphere.**
(i) Verify that the Dirichlet Green’s function for the Laplacian for the interior of a spherical domain of radius \(a \) is

\[
G(x; x_0) = \frac{-1}{4\pi|x - x_0|} + \frac{a}{4\pi|x - x_0|^2}, \quad x_0 = \frac{a^2|x_0|}{|x_0|^2}.
\]

(ii) Find the Dirichlet Green’s function for the Laplacian for the exterior of a spherical domain of radius \(a \).

Properties of Green’s functions.

9. **Representation formula in 2D.**
If \(\alpha \) is a harmonic function in a 2D domain \(D \), with boundary \(\partial D \), show that

\[
u(x_0) = \frac{1}{2\pi} \int_{\partial D} \left[u(x) \frac{\partial}{\partial n} (\log |x - x_0|) - \log |x - x_0| \frac{\partial u}{\partial n} \right] dl,
\]

where \(dl \) is an arc element of \(\partial D \), \(x \in \partial D \), \(x_0 \in D \).

10. **Application of boundary conditions.**
Consider the problem

\[
\nabla^2 u = 0, \quad u(x, y, 0) = h(x, y), \quad u \to 0 \text{ as } x^2 + y^2 \to \infty,
\]

where \(h(x, y) \) is bounded and continuous, which has the solution

\[
u(x_0, y_0, z_0) = \frac{z_0}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[(x - x_0)^2 + (y - y_0)^2 + z_0^2 \right]^{-3/2} h(x, y) dx dy.
\]

Verify directly from the formula that the boundary conditions are satisfied.

[Hint: It may be helpful to change variables to \(z_0^2 s^2 = (x - x_0)^2 + (y - y_0)^2 \).]

11. **Symmetry.**
Consider a Green’s function \(G(r_1; r_2) \) for the Laplacian defined in an arbitrary three-dimensional domain \(D \). By using Green’s second identity, show that \(G(r_1; r_2) = G(r_2; r_1) \) for all \(r_1 \neq r_2 \) in the domain \(D \).

Bessel functions revisited.

12. **Laplacian in cylindrical polar coordinates.**
Consider the problem \(\nabla^2 u = 0, \ r \neq 0, \ u \to 0 \text{ as } r \to \infty \). Show that a solution of this equation which is independent of polar angle is \(u_1 = 1/r = 1/(R^2 + z^2)^{1/2} \) where \(R \) is the radial component in cylindrical polar coordinates. By considering the Laplacian in cylindrical polar coordinates

\[
\nabla^2 = \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2},
\]

and separating variables, show that, for an arbitrary function \(f(\lambda) \),

\[
u_2 = \int_0^\infty f(\lambda)e^{-\lambda|z|}J_0(\lambda R) d\lambda,
\]

is harmonic for \(z > 0 \) and \(z < 0 \). Now let \(f(\lambda) = 1 \). Assuming that \(\int_0^\infty J_0(\lambda z)dz = 1 \), show that \(u_2 = 1/R \) on the \(z = 0 \) plane. Explain why it is plausible that \(u_2 = 1/r \) everywhere (you need not prove this) and deduce, if so, that

\[
\int_0^\infty e^{-\lambda|z|}J_0(\lambda R) d\lambda = \frac{1}{\sqrt{R^2 + z^2}}.
\]

This is effectively a derivation of the **Laplace transform** of \(J_0(\lambda R) \).

1. If you find any errors in the Methods Examples sheets, please inform your supervisor or email epss@damtp.cam.ac.uk.