1. A particle of mass m is confined to a one-dimensional box $0 \leq x \leq a$ (the potential $V(x)$ is zero inside the box, and infinite outside). Show that the energy eigenvalues are $E_n = \hbar^2 \pi^2 n^2 / 2ma^2$ for $n = 1, 2, \ldots$, and determine corresponding normalised energy eigenstates $\psi_n(x)$. Show that the expectation value and the uncertainty for a measurement of \hat{x} in the state ψ_n are given by

$$\langle \hat{x} \rangle_n = \frac{a}{2} \quad \text{and} \quad (\Delta x)^2_n = \frac{a^2}{12} \left(1 - \frac{6}{\pi^2 n^2} \right).$$

Does the limit $n \to \infty$ agree with what you would expect for a classical particle in this potential?

2. Write down the Hamiltonian H for a harmonic oscillator of mass m and frequency ω. Express $\langle H \rangle$ in terms of $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, Δx and Δp, all defined for some normalised state ψ. Use the Uncertainty Relation to deduce that $E \geq \frac{1}{2} \hbar \omega$ for any energy eigenvalue E.

3. Let $\Psi(x, t)$ be a solution of the time-dependent Schrödinger Equation with zero potential (corresponding to a free particle). Show that

$$\Phi(x, t) = \Psi(x-ut, t) e^{i k x} e^{-i \omega t}$$

is also a solution if the constants k and ω are chosen suitably, in terms of u. Express $\langle \hat{x} \rangle_\Phi$ and $\langle \hat{p} \rangle_\Phi$ in terms of $\langle \hat{x} \rangle_\psi$ and $\langle \hat{p} \rangle_\psi$. Are the results consistent with Ehrenfest’s Theorem?

4. The energy levels of the harmonic oscillator are $E_n = (n+\frac{1}{2}) \hbar \omega$ for $n = 0, 1, 2, \ldots$ and the corresponding stationary state wavefunctions are

$$\psi_n(x) = h_n(y) e^{-y^2/2} \quad \text{where} \quad y = (m \omega / h)^{1/2} x$$

and h_n is a polynomial of degree n with $h_n(-y) = (-1)^n h_n(y)$. Using only the orthogonality relations

$$(\psi_m, \psi_n) = \delta_{mn},$$

determine ψ_2 and ψ_3 up to an overall constant in each case.

Give an expression for the quantum state of the oscillator $\Psi(x, t)$ if the initial state is $\Psi(x, 0) = \sum_{n=0}^{\infty} c_n \psi_n(x)$, where c_n are complex constants. Deduce that

$$|\Psi(x, 2p\pi/\omega)|^2 = |\Psi(-x, (2q+1)\pi/\omega)|^2$$

for any integers $p, q \geq 0$. Comment on this result, considering the particular case in which $\Psi(x, 0)$ is sharply peaked around position $x = a$.

5. Consider the Schrödinger Equation in one dimension with potential $V(x)$. Show that for a stationary state, the probability current J is independent of x.

Now suppose that an energy eigenstate $\psi(x)$ corresponds to scattering by the potential and that $V(x) \to 0$ as $x \to \pm \infty$. Given the asymptotic behaviour

$$\psi(x) \sim e^{ikx} + Be^{-ikx} \quad (x \to -\infty) \quad \text{and} \quad \psi(x) \sim Ce^{ikx} \quad (x \to +\infty)$$

show that $|B|^2 + |C|^2 = 1$. How should this be interpreted?

6. A particle is incident on a potential barrier of width a and height U. Assuming that $U = 2E$, where $E = \hbar^2 k^2 / 2m$ is the kinetic energy of the incident particle, find the transmission probability. [Work through the algebra, which simplifies in this case, rather than quoting the general result.]
7. Consider the time-independent Schrödinger Equation with potential \(V(x) = -U\delta(x) \). Show that there is a scattering solution with energy eigenvalue \(E = \hbar^2 k^2 / 2m \) for any real \(k > 0 \) and find the transmission and reflection amplitudes \(A_t(k) \) and \(A_r(k) \). [Recall from Example 9 on Sheet 1 that the wavefunction \(\psi \) is continuous, but satisfies \(\psi'(0+) - \psi'(0-) = -(2mU/\hbar^2) \psi(0) \).]

Is the solution above still an eigenfunction of the Hamiltonian if \(k \) is allowed to take complex values? Show that \(A_t(k) \) and \(A_r(k) \) are singular at \(k = ik \) for a certain real, positive value of \(\kappa \). By first re-scaling the scattering solution, find a bound state (normalisable) solution in the potential. What is the energy of this bound state?

8. A particle of mass \(m \) is in a one-dimensional infinite square well (a potential box) with \(V = 0 \) for \(0 < x < a \) and \(V = \infty \) otherwise. The normalised wavefunction for the particle at time \(t = 0 \) is

\[
\Psi(x,0) = Cx(a-x).
\]

(i) Determine the real constant \(C \).

(ii) By expanding \(\Psi(x,0) \) as a linear combination of energy eigenfunctions (found in Example 1 above), obtain an expression for \(\Psi(x,t) \), the wavefunction at time \(t \).

(iii) A measurement of the energy is made at time \(t > 0 \). Show that the probability that this yields the result \(E_n = \hbar^2 n^2 / 2ma^2 \) is \(960/\pi^6 n^6 \) if \(n \) is odd, and zero if \(n \) is even. Why should the result for \(n \) even be expected? Which value of the energy is most likely, and why is its probability so close to unity?

9. A quantum system has Hamiltonian \(H \) with normalised eigenstates \(\psi_n \) and corresponding energies \(E_n \) (\(n = 1, 2, 3, \ldots \)) . A linear operator \(Q \) is defined by its action on these states:

\[
Q \psi_1 = \psi_2, \quad Q \psi_2 = \psi_1, \quad Q \psi_n = 0 \quad n > 2.
\]

Show that \(Q \) has eigenvalues \(\pm 1 \) (in addition to zero) and find the corresponding normalised eigenstates \(\chi_{\pm} \), in terms of energy eigenstates. Calculate \(\langle H \rangle \) in each of the states \(\chi_{\pm} \).

A measurement of \(Q \) is made at time zero, and the result +1 is obtained. The system is then left undisturbed for a time \(t \), at which instant another measurement of \(Q \) is made. What is the probability that the result will again be +1? Show that the probability is zero if the measurement is made when a time \(T = \pi \hbar / (E_2 - E_1) \) has elapsed (assume \(E_2 - E_1 > 0 \)).

10. In the previous example, suppose that an experimenter makes \(n \) successive measurements of \(Q \) at regular time intervals \(T/n \). If the result +1 is obtained for one measurement, show that the amplitude for the next measurement to give +1 is

\[
A_n = 1 - \frac{i T (E_1 + E_2)}{2\hbar n} + O\left(\frac{1}{n^2}\right).
\]

The probability that all \(n \) measurements give the result +1 is then \(P_n = (|A_n|^2)^n \). Show that

\[
\lim_{n \to \infty} P_n = 1.
\]

Interpreting \(\chi_{\pm} \) as the ‘not-boiling’ and ‘boiling’ states of a two-state ‘quantum kettle’, this shows that a watched quantum kettle never boils (also called the Quantum Zeno Paradox).

11. Let \(H \) be a Hamiltonian and \(\psi \) any normalised eigenstate with energy \(E \). Show that, for any operator \(A \),

\[
\langle [H, A] \rangle_{\psi} = 0.
\]

For a particle in one dimension, let \(H = T + V \) where \(T = \hat{p}^2 / 2m \) is the kinetic energy and \(V(\hat{x}) \) is any (real) potential. By setting \(A = \hat{x} \) in the result above and using the canonical commutation relation between position and momentum, show that \(\langle \hat{p} \rangle_{\psi} = 0 \).

Now assume further that \(V(\hat{x}) = k \hat{x}^n \) (with \(k \) and \(n \) constants). By taking \(A = \hat{x} \hat{p} \), show that

\[
\langle T \rangle_{\psi} = \frac{n}{n+2} E \quad \text{and} \quad \langle V \rangle_{\psi} = \frac{2}{n+2} E.
\]

Comments to: J.M.Evans@damtp.cam.ac.uk