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Michaelmas term 2017 Part II COSMOLOGY Prof. E.P.S. Shellard / Dr J.R. Fergusson

EXAMPLES I

1. Olbers’ paradox In a simple static cosmological model, an average cosmic mass density ρ describes an
infinite number of stars, of mass M , radius R and luminosity L (i.e. total power emitted). Assuming the stars
are evenly, but randomly, distributed throughout an infinite universe, note that an observer at r = 0 will observe
an average number (ρ/M)4πr2dr stars on a spherical shell at r of thickness dr. By considering the fraction of the
sky covered by these stars, argue that the entire night sky will be covered if we can integrate out to the distance:

d ≈
M

ρπR2
.

Show that the total number of visible stars will be N = 4πM2/(3ρ2(πR2)3) (though in fact it is a larger number
because the stars would partially obscure each other (occultation)).

Given that the energy flux per unit area of a single star at a distance r is Φ = L/4πr2, show that the model
predicts a total energy flux per unit area on earth of Φ ∼ L/πR2. Show further that this equals the energy flux
per unit area that the earth would receive if each point on the sky were as bright as the nearest star, i.e. the sun,
so not very habitable. This is ‘Olbers’ paradox’: Why is the sky dark at night?

In our universe, the average cosmic number density of hydrogen is approximately 1 atom per cubic metre
(which we will assume is mainly concentrated in stars like our Sun). Use this to show that

d

cH−1
0

∼ 1013 .

How does this resolve the paradox? [M⊙ ∼ 2× 1030kg, R⊙ ∼ 7× 108m, mH ∼ 1.7× 10−27kg, cH−1
0 ∼ 1026m.]

2. Newtonian gravitational collapse: (i) Instability of Newton’s ‘static’ universe – A spherical cloud of mass
M and initial radius R contains material with uniform density, ρ, and zero pressure. Ignoring the cosmological
constant, show that if it is initially at rest at t = 0 when the radius r(t) is R, then the subsequent gravitational
collapse governed by Newton’s law r̈ = −GM/r2 is described by a parametric solution for r(t), with

r(θ) = R cos2 θ , θ +
1

2
sin 2θ =

(

2GM

R3

)1/2

t ,

where we define θ(t=0) = 0. Sketch the behaviour of r(t) as it collapses from r = R to r = 0 and show that the
cloud reaches r = 0 after a time

tcol =

√

3π

32Gρ0
,

where ρ0 = M/( 4π3 R3) is the initial density. [Note: This is the same behaviour as the evolution of a closed
dust-filled homogeneous and isotropic universe from the time of expansion maximum to the final singularity (see
Q5 for w = 0). The parametric solution for r(t) describes a cycloid.]

(ii) Astronomical units – Estimate this collapse timescale ∼(Gρ0)
−1/2 in years, assuming a typical star has one

solar mass with an interstellar separation of one parsec. [M⊙ ≈ 2× 1030 kg, 1pc ≈ 3× 1016 m, 1 yr ≈ 3× 107 s.]
In fact, our galaxy does not collapse and its structure has been sustained over billions of years by ‘random’

orbital velocities of about v ∼ 220 km/s (see virial theorem later). Show that the typical angular speed ω at which
one star moves across the sky relative to another is subject to the approximate upper bound ω . 10−4 rad/yr.
How long can we expect Proxima Centauri to be our nearest neighbour star?

3. Distance measures: (i) Angular diameter distance – The apparent angular size δθ of a galaxy of fixed
proper (physical) size ℓ located at a comoving distance x is

δθ =
ℓ

a(te)x
,

where te is the time of emission from the galaxy of the light that we see now. Taking a(t0) = 1 in an Einstein-de
Sitter universe (ΩM=1, a = (t/t0)

2/3), show that x = 3ct0[1− (te/t0)
1/3] and hence that

δθ =
ℓ

2cH−1
0

(1 + z)

[1− (1 + z)−
1

2 ]
.
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Sketch the graph of δθ against z and show that there is a minimum at z = 1.25. [Note: This behaviour could be
used to distinguish cosmological models, e.g., verify there is no minimum size in a de Sitter universe (ΩΛ=1).]

(ii) Luminosity distance – A galaxy of constant intrinsic luminosity L has redshift z, as seen from Earth. Show
that the rate at which its radiant energy passes through a sphere that intercepts Earth, and is centred on the
galaxy, is L/(1 + z)2. [This is the ‘apparent luminosity’ of a galaxy and it can be used to infer its distance,
assuming its intrinsic luminosity is well understood.]

4. Cosmological horizons and event horizons: Show that the equation of state P=−ρc2 implies a constant

mass density ρ, which we may write as

ρ =

(

c2

8πG

)

Λ ,

where Λ is the ‘cosmological constant’, with units of inverse length squared. Show that the acceleration equation
for ä/a has the de Sitter universe solution (like an inflationary universe):

a(t) = a0e
Ht , H = c

√

Λ/3 .

What is the value of the parameter k for this solution? Show that

∫ t

−∞

dt′

a(t′)
= ∞

and hence that the de Sitter universe has no cosmological (‘particle’) horizon. Show, however, that the integral

∫ ∞

t

dt′

a(t′)

is finite (for finite t) and hence deduce that there is a maximum comoving distance that a signal emitted at time
t can travel from its source. Thus, there are events in a de Sitter universe that an observer can never see; they are
said to be beyond the cosmological event horizon. This is a different kind of horizon to the cosmological particle
horizon of decelerating model universes discussed in the lectures. Show that any model universe with a ∝ tα has
no event horizon as long as α < 1 (in other words, as long as it is decelerating).

5. Open universe: Consider an empty universe, with ρ = 0. Find the general solution of the acceleration
(Raychaudhuri) equation, and then show that a solution with non-constant scale factor a(t) solves the Friedmann
equation only if k < 0. You have just found the Milne universe.

Show that the age of the Milne universe equals the Hubble time H−1
0 . Show further that the general universe

with this property has ρ ∝ t−2 and an equation of state P = −
1
3ρc

2.

6. Closed universes: A homogeneous and isotropic model universe has pressure P (t) and energy density
E/V = ρ(t)c2 such that P = wρc2 where w is a constant. Assuming that the universe is expanding adiabatically,
such that dE = −PdV , show that ρ = ρ0a

−3(w+1) for constant ρ0, where a(t) is the scale factor of the universe.
Let

τ(t) =

∫ t dt′

a(t′)

be a new time parameter (conformal time), and define the new function y(τ) by y = a(3w+1)/2 . Show that the
Friedmann equation for a(t) implies that y(τ) satisfies

y′′ +
kc2

4
(3w + 1)

2
y = 0 .

Fix the zero of time by a(0) = 0 and show that for a radiation-dominated universe (w = 1/3) with k = 1 the
graph of a(t) against t is a semi-circle. Find the total time duration from Big Bang to Big Crunch as a function
of ρ0.

7. Matter-radiation transition: Consider the evolution of a flat (k = 0) universe containing both a matter
density ρM (pressure PM=0) and a radiation density ρR (pressure PR=

1
3ρRc

2). Show that these densities are
equal ρM = ρR when the scale factor is given by

a = aeq ≡
ρR0

ρM0
=

ΩR0

ΩM0
,
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where ΩM0 and ΩR0 are the respective density parameters today. Use the conformal time parameter dτ = dt/a
(see previous question), to show that the Friedmann equation takes the form

a′2 = A(a+ aeq) ,

where A = H2
0ΩM0

. Hence find the parametric solution for the transition between radiation and matter domina-
tion:

a(τ) =
1

4
Aτ2 +Bτ , t(τ) =

1

12
Aτ3 +

1

2
Bτ2 ,

where B2 = H2
0ΩR0. Find the asymptotic solutions for a(t) when a ≫ aeq and a ≪ aeq.

8*. Time-varying G: The expansion scale factor r(t) of a Newtonian universe with zero pressure matter and
Λ = 0 is governed by the gravitation law r̈ = −GM/r2, where M = 4πρr3/3 is constant and ρ(t) is the matter
density. If the gravitation ‘constant’ is assumed to vary in time with G(t) = G0(t0/t)

n, where G0, n and t0 are
positive constants, then show that there is an exact solution with

r(t) ∝ t(2−n)/3 .

Why is there no counterpart of the Friedmann equation in this problem?
This solution reduces to the Einstein-de Sitter universe when n = 0. This is the Newtonian analogue of the

exact zero-curvature cosmological solution with P = 0 in what is known as the Brans-Dicke theory of gravity, a
theory which generalises Einstein’s theory of general relativity to include a varying G.

[Note: Observations indicate that any variation must be tiny today with
∣

∣

∣
Ġ/G

∣

∣

∣
< 10−12 per year.]

*Please send any corrections to epss@damtp.cam.ac.uk
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