Copyright © 2025 University of Cambridge. Not to be quoted or reproduced without permission.

Michaelmas term 2025 Part II Cosmology Prof. E.P.S. Shellard

EXAMPLES II

1. Vacuum energy density In special and general relativity, the energy density p and pressure P of a perfect
fluid combine to form the energy-momentum tensor. In the rest frame of the fluid, this is given by
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After a Lorentz boost by velocity v in the x—direction, the energy-momentum tensor transforms to
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What equation of state P = w p gives rise to a fluid that looks the same to all inertial observers?

2. Deceleration parameter is defined by )
_ad
a(t)=-%.
Compute ¢ for a flat universe dominated by a single fluid with equation of state P = wp.
For a universe with arbitrary curvature, filled with matter, radiation and a cosmological constant, show that

today
1
do = §Qm + Qrad - QA .

What is the deceleration parameter for our universe?
Show that the Taylor expansion of the scale factor about the present day (with a(ty) = 1) can be written as
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Hence show that the light from a nearby galaxy at redshift z <« 1 was emitted at time
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3. Matter—dark energy transition. A flat universe, containing matter and a cosmological constant, expands

according to the Friedmann equation
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a(t) = B(sinh at)?/? (1)

Solve this to find

with @ and § constants that you should specify. [Hint: you may find the substitution b = a®/? helpful.] Verify
the expected asymptotic behaviour for early and late times. smallskip
Our universe today is flat, with Q, ~ 0.3 and Q4 =~ 0.7 and HO_1 ~ 14 Gyr. Using these parameters, estimate:

e The age of the universe.
e The age at which the expansion of the universe first started to accelerate.
e The age at which the energy density in matter and the cosmological constant were equal.

A cosmologically ignorant civilisation measures H, !~ 14 Gyr but refuses to countenance the possibility of a
cosmological constant. How old would they believe their universe to be if they assumed it was flat with Q,, = 17
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4. Beyond expansion and acceleration. The jerk (or surge) parameter is defined as

The past 14 billion years of cosmic expansion can be roughly characterised as: the jerk is unity. To see this,
consider the Friedmann equation with matter, a cosmological constant and curvature. Show that the curvature
can be written as

kc* =a*H*(J —1).

Confirm that the solution (1) indeed has unit jerk. (Note k is defined to take values: k= +1/R3,0,—1/R3.)
[Fun fact: the 4™ 5" and 6" derivatives of the scale factor are called snap, crackle and pop respectively.]

5. Radiation—A model. A flat universe, containing radiation and a cosmological constant, expands according
to the Friedmann equation
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Solve for a(t). Verify the expected asymptotic behaviour for early and late times.

6. Virial theorem and dark matter. Consider a collection of particles, each of which interacts through the
potential
Vixi —x5) = alx; —x;|" .
Prove the virial theorem, - B
2T =nV,
where T is the time-averaged kinetic energy and V the time-averaged total potential energy. Show that conven-
tional orbits in our solar system satisfy this relation.

7. Exact inflationary solution. The equations of motion for inflation can be written as
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where Mgl = c?/(87Q) is related to the reduced Planck mass. Consider the potential
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Show that the inflationary equations have the exact solution
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a(t) = <t) and  ¢(t) = ¢o + alogt,
0

for some choice of ¢g and a.

For what values of A does inflation occur? Define the pressure-energy density ratio wy = Py/py. For what range
of wg does inflation occur?

8. Hamilton—Jacobi approach to inflation. Assume that an inflationary solution ¢(t) is monotonic and
view the Hubble parameter H(t) as a function H(¢(t)). Show that the equations of inflation (2) and (3) can be
written in “Hamilton-Jacobi” form

. oOH
¢ = —2M§137¢

and

2
V(¢) =3M3H? — 2M;, (%Z) :

[Hint: you might start by differentiating the Friedmann equation (2) with respect to time.]
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The Hamilton-Jacobi formalism can be used to construct exact solutions in which one specifies a choice of H(¢)
and then works backwards to read off the corresponding potential V' (¢), the scalar evolution ¢(¢) and, hence the
scale factor a(t). Find these three quantities for

9. Slow-roll approximation. Under the slow roll conditions, the inflationary equations become

V(¢) and 3Hq§z—a—v
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Solve these equations to find the scale factor a(t) for the choice of potentials

o V(9) = ym?e?;

. V(6) = Ao

Determine the value of ¢ when inflation ends and hence the initial ¢ required to achieve 60 e-folds.

*Please send any corrections to epss@damtp.cam.ac.uk



