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Michaelmas term 2024 Part II Cosmology Prof. E.P.S. Shellard

EXAMPLES III

1. Maxwell-Boltzmann distribution A non-relativistic, quantum mechanical particle sits in a box whose
sides have length a(t)× L. Write down the wavefunctions when a(t) is constant.

It can be shown that if a(t) changes suitably slowly then the system remains in a given energy eigenstate
(Ehrenfest’s Principle). Show that the momentum “redshifts” as p(t) = p0/a(t) where p0 is the momentum
when a(t0) = 1.

A gas of non-relativistic particles at temperature T is described by the Maxwell-Boltzmann distribution at
time t = t0. Assuming the momentum-redshift above, show that the gas retains the Maxwell-Boltzmann form as
the Universe expands, but with a temperature that scales as T (t) = T0/a(t)

2. (This means that a non-relativistic
particle species maintains its equilibrium distribution after decoupling, that is, when there are no interactions to
maintain equilibrium (just like photons do in the ultrarelativistic limit).

2. CMB dipole The thermal cosmic microwave background is assumed to be isotropic with a temperature T
in an inertial frame S. The same radiation is detected in another inertial frame S′, moving with velocity v with
respect to S.

The Lorentz transformation relating the energy E and 3-momentum p of a particle in the two frames is

E = γ(E′ − v · p′) with γ =

(

1−
v2

c2

)−1/2

.

A photon has E = p c. Show that the microwave background will also appear thermal in S′, but with an
anisotropic temperature

T ′(θ′) =
T

γ
(

1− v
c cos θ

′

) ≈ T

[

1 +
v

c
cos θ′ +O

(

v2

c2

)]

,

where θ′ is the angle between the velocity v and the momentum p′ of the photon arriving at the detector.
Let T ′

+ and T ′

−
be the maximum and minimum temperatures seen in the inertial frame S′. Show that

T =
√

T ′

+T
′

−
.

The observed CMB, shown in the figure, has T ′

+ − T ′

−
≈ 6.5 × 10−3K, with T =

√

T ′

+T
′

−
≈ 2.7K . How fast

are we travelling with respect to the Universe’s preferred inertial frame?

It is believed that there exists a yet-to-be-observed thermal cosmic neutrino background that is isotropic in
the same frame S as the CMB. The neutrino has a small mass and so E2 = p2c2 +m2c4. Today, the neutrinos
are travelling at non-relativistic speeds. Show that when (if!) we finally observe the cosmic neutrino background,
we do not expect the energy density to be thermal, even at a fixed angle.

3. Planck thermal black-body spectrum and recombination. The Planck blackbody formula states that
the number of photons with frequency between ν and ν + dν is

n(ν)dν =
8π

c3
ν2

eβ h ν − 1
.
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Show that the total number of photons is

nγ =
4π ζ(3)

(h c)3
(kB T )3 (1)

[You will need the integral
∫ +∞

0
dy y2/(ey − 1) = 2ζ(3) with ζ(3) ≈ 1.2.]

Define nenergetic to be the number of energetic photons with energy greater than the hydrogen binding energy
Ebind ≈ 13.6 eV. Show that, when kBT ≪ Ebind,

nenergetic

nγ
≈

(βEbind)
2

2ζ(3)
e−βEbind .

As a näıve diagnostic, suppose that recombination occurs when there is less than a single energetic photon
per baryon. Use the baryon-to-photon ratio η = nB/nγ ≈ 10−9 to determine the temperature and redshift of
recombination according to this criterion.

4. Saha’s equation. Assume that electrons, protons and hydrogen are in chemical equilibrium during recombi-
nation, with the chemical potentials related by µe + µp = µH . Show that the number of electrons is related to
the number of hydrogen atoms by

n2
e ≈ nH

(

2πmekBT

h2

)3/2

e−β Ebind ,

with Ebind the binding energy of the hydrogen ground state. What assumptions did you make along the way?
The ionization fraction is defined as Xe = ne/nB with nB ≈ np + nH , the number of baryons. Use the

expression (1) to show that

1−Xe

X2
e

= η
2ζ(3)

π2

(

2πkBT

mec2

)3/2

eβ Ebind ,

with η the baryon-to-photon ratio. Consider the limiting regimes kBT ≪ Ebind and Ebind ≪ kBT ≪ mec
2 to

roughly sketch Xe as a function of temperature.

5. Photon Planck spectrum and decoupling. Recombination is not instantaneous, but happens over a
period of time. Some photons in the CMB come from earlier times, when the universe was hotter, and some from
later times.

Why does the observed CMB exhibit a perfect blackbody spectrum at a single temperature?

6. Boson and fermion densities. At temperature T , and vanishing chemical potential, the expected number
of particles with momentum p is given by

n(p) =
1

eβ E(p) ∓ 1

where the minus sign is for bosons and the plus sign for fermions.
For ultra-relativistic particles, with E(p) ≈ pc, show that the total number of fermions, nF , is related to the

total number of bosons, nB , by nF = 3nB/4. Show that the total energy density of fermions, ρF , is related to
the total energy density of bosons, ρB , by ρF = 7ρB/8.

[Note: you need not evaluate any integral to do this question.]

7. Electron–positron annihilation and lepton asymmetry. Consider a gas of electrons and positrons in
the ultra-relativistic limit kB T ≫ mec

2 . In the early Universe, there must have been a slight imbalance of
electrons over positrons. This is modelled by introducing a small chemical potential µe ≪ kBT for electrons, with
an equal and opposite chemical potential for positrons. Show that this results in a small excess ∆n of electrons
over positrons, given by

∆n =
4π3g (kBT )

2

3h3c3
µe

[

1 +O

(

µ2
e

k2BT
2

)]

.

[You will need to use the integral
∫ +∞

0
dy y/(ey + 1) = π2/12.]

*Please send any corrections to epss@damtp.cam.ac.uk
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