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Michaelmas term 2024 Part II Cosmology Prof. E.P.S. Shellard

EXAMPLES IV

1. Neutrino temperature. The energy density of a thermal bath of ultra-relativistic particles is given by

ρ = g⋆
π2

30~3c3
(kBT )

4

where the effective number of relativistic species is

g⋆(T ) =
∑

bosons

gi +
7

8

∑

fermions

gi .

Here the sum is only over particles in thermal equilibrium with kBT > mc2. When the temperature drops below
a mass threshold, the corresponding species of particle is removed from the sum. When this happens, entropy
considerations show that the temperature rises so that the combination g⋆T

3 remains constant.
At temperatures kBT ≫ 2me c

2 ≈ 1MeV, electrons, positrons and photons are in equilibrium through the
reaction e+ + e− ↔ γ + γ. Show that when electrons and positrons annihilate, the temperature of the thermal
bath increases by a factor of (11/4)1/3.

Neutrinos decoupled from the thermal bath before electron-positron annihilation. Assuming that the relic
neutrino background remains relativistic today, what is its expected temperature?

Primordial gravitons are thought to decouple at kBT ≈ Mplc
2 ≈ 1019 GeV. Estimate the temperature today

of the relic thermal graviton background assuming that only Standard Model particles are in thermal equilibrium
with gravitons when they decouple. [The particles in the Standard Model add up to give g⋆ = 106.75.] Should
we observe this relic graviton background, why would we expect the temperature to be smaller than this?

2. Primordial nucleosynthesis. Qualitatively discuss the effects of the following scenarios on helium produc-
tion in the early Universe. Do they result in a higher or lower helium-to-hydrogen ratio today, or do they make
little difference?

• The baryon-to-photon ratio was considerably larger during nucleosynthesis than today.

• There are extra species of ultra-relativistic particle during nucleosynthesis.

• The weak interaction was much stronger at the time of nucleosynthesis.

• Nucleosynthesis took place during a matter-dominated epoch rather than in the radiation era.

Since nucleosynthesis predictions are so precise, these kind of considerations give in strong constraints on what
was going on in the first few minutes after the Big Bang.

3. Fluid equations in an expanding background. A fluid in an expanding spacetime has energy density
ρ(x, t), velocity u(x, t) = H ax(t) + v(x, t) and equation of state P (x, t) = ωρ(x, t). It obeys the continuity
equation

∂ρ

∂t
+ 3(1 + ω)Hρ+

1

a
(1 + ω)∇x · (ρv) = 0 ,

the Euler equation

a

(

∂

∂t
+

v

a
· ∇

)

u = −c2

ρ
∇P −∇Φ ,

and the Poisson equation

∇2Φ =
4πG

c2
(1 + 3ω)ρ a2 .

What is the spatially homogeneous background solution ρ̄(t) when v = 0? What conditions should P̄ and Φ̄
obey to ensure that the Euler and Poisson equations hold in this background? Show that these conditions are
equivalent to the Raychaudhuri (acceleration) equation

ä

a
= −4πG

3c2
(1 + 3ω)ρ .
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The background solution is perturbed as ρ(x, t) = ρ̄(t)[1 + δω(x, t)] and P (x, t) = P̄ (t) + δP (x, t) and Φ(x, t) =

Φ̄(x, t)+ δΦ(x, t). Show that δ̂ω(k, t), the Fourier transform of the contrast function δω(k, t), obeys the linearised
equation

¨̂
δω(k, t) + 2H

˙̂
δω(k, t) + c2s(1 + ω)

[

k2

a2
− (1 + 3ω)k2J

]

δ̂ω(k, t) = 0 ,

with cs the speed of sound and the Jeans’ wavenumber given by

k2J =
4πGρ̄

c2sc
2

.

4. General perturbation solutions. The background energy density in matter scales as ρ̄ = ρ0/a
3. For long

wavelengths, where we may ignore pressure, the evolution of matter perturbations is governed by

δ̈ + 2Hδ̇ =
4πGρ̄

c2
δ .

By viewing H(t) and δ(t) as functions of the scale factor a(t), show that this equation is equivalent to

d

da

(

a3H
dδ

da

)

=
4πGρ0
c2

δ

H a2
. (1)

Show that δ1 = H is a solution provided that the expansion of the Universe is due to any combination of matter,
curvature and a cosmological constant.

Show that the second solution is given by

δ2 = H g with a3H3 dg

da
= constant .

What is the a dependence of each of these solutions when the expansion of the universe is dominated by matter?
By curvature? By a cosmological constant?

5. Radiation-matter density perturbation solution. The purpose of this question is to solve (1) in a
flat universe whose expansion is due to matter and radiation (i.e. with vanishing curvature and cosmological
constant).

Define x = a/aeq where aeq is the scale factor at matter-radiation equality. Show that we can write

H(x) =
A

x2

√
1 + x with A2 ≡ 8πGρeq

3c2
,

where ρeq is the energy density of matter at matter-radiation equality. Hence show that (1) is equivalent to

δ′′ +

[

1

x
+

1

2(1 + x)

]

δ′ =
3

2

δ

x(1 + x)
,

where the prime denotes differentiation with respect to x. Show that this equation is solved by

δ1 = 1 +
3

2
x .

The second solution to this equation is more fiddly: it turns out to be

δ2 =

(

1 +
3

2
x

)

log

(
√
1 + x+ 1√
1 + x− 1

)

− 3
√
1 + x .

Identify the growing and decaying modes at early and late times.

6. Transfer functions at keq. For the flat universe filled with matter and radiation described in Q5, discuss
how the continuous growing perturbation solution found above could be used to quantitatively improve the simple
(piecewise linear) transfer function found in lectures:

T (k) =







1, k < keq ,
(

keq

k

)2

, k > keq .

What additional effects could be included to improve the accuracy of this transfer function further?

*Please send any corrections to epss@damtp.cam.ac.uk
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