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Further Complex Methods, Examples sheet 3 (C8c) Lent Term 2025

Mathematical Tripos Part II - C Course Professor Peter Haynes

Comments and corrections: e-mail to phh1@cam.ac.uk.

Starred questions or parts of questions are intended as extras: attempt them if you have time,

but not at the expense of unstarred questions.

1 (a) Prove that for Re z > 1,

1

Γ(z)

∫
∞

0

tz−1

et − 1
dt =

Γ(1− z)

2iπ

∫
γ

tz−1

e−t − 1
dt,

where γ denotes the Hankel contour. Hence, deduce that the RHS of the above equation
provides the analytic continuation of Riemann’s zeta function.

(b) The Bernoulli numbers Bn are defined by

1

et − 1
=

∞∑
m=0

Bm
tm−1

m!
,

and B0 = 1, B1 = −1
2 , B2m+1 = 0 for m = 1, 2, . . . .

Use (a) and the residue theorem to compute ζ(−n), n = 0, 1, 2, . . . in terms of Bn. Hence,
deduce that the negative even integers are zeros of ζ(z).

2 Show that for Re z > 1

(1− 21−z)ζ(z) = (1−z − 2−z + 3−z − 4−z · · · ) = 1

Γ(z)

∫
∞

0

tz−1

et + 1
dt.

[Note: This result is actually valid for Re z > 0.]

3 Show that ∫ (0+)

−∞

ln t

e−t − 1
dt = 0.

Hence show that
lim
z→1

(ζ(z)− (z − 1)−1) = γ,

and
ζ ′(0) = − ln

√
2π.
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4 The psi-function is defined to be

ψ(z) =
d

dz
ln Γ(z).

Show that

ψ′(z) =
∞∑
s=0

1

(s+ z)2
, (z 6= 0,−1,−2 · · · ).

[Recall Q9 on Example Sheet 2.]

Then show that when z is real and positive, that Γ(z) has a single minimum which lies between
z = 1 and z = 2.

Show that, for |z − 1| sufficiently small,

ln Γ(z) = −γ(z − 1) +

∞∑
s=2

(−1)s
ζ(s)

s
(z − 1)s.

What is the radius of convergence of this series?

5 Find two independent solutions of the Airy equation w′′ − zw = 0 in the form

w(z) =

∫
γ
eztf(t) dt,

where γ is to be specified in each case. Show that there is a solution for which γ can be chosen
to consist of two straight line segments in the left half t-plane (Re t ≤ 0).

For this solution show that, if w(z) is normalised so that w(0) = iA 3−
1
6Γ(1/3), where A

is a constant, then w′(0) = −iA 3
1
6Γ(2/3).

[Note: Γ(z) =
∫
∞

0 e−ttz−1dt for Re z > 0.]

6 By writing w(z) in the form of an integral representation with the Laplace kernel show
that the confluent hypergeometric equation zw′′+(c−z)w′−aw = 0 has solutions of the form

w(z) =

∫
γ
ta−1(1− t)c−a−1etz dt,

provided the path γ is chosen such that [ta(1− t)c−aetz]γ = 0.
In the case Re z > 0, find paths which provide two independent solutions in each of the

following cases (where m is a positive integer):
(i) a = −m, c = 0;
(ii) Re a < 0, c = 0, a is not an integer;
(iii) a = 0, c = m;
(iv) Re c >Re a > 0, a and c− a are not integers.
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7 Use the Laplace transform to solve the ordinary differential equation

d2y

dt2
− k2y = f(t), k > 0, y(0) = y0, y′(0) = y′0.

Let f(t) = e−k0t, k0 6= k, k0 > 0, so that the Laplace transform of f(t) is

f̂(s) =
1

s+ k0
.

Show that

y(t) = y0 cosh kt+
y′0
k

sinh kt+
e−k0t

k20 − k2
− cosh kt

k20 − k2
+

k0
k

k20 − k2
sinh kt. (1)

Now suppose that f(t) is an arbitrary continuous function that possesses a Laplace
transform. Use the convolution theorem for Laplace transforms, or otherwise, to show that

y(t) = y0 cosh kt+
y′0
k

sinh kt+

∫ t

0
f(t′)

sinh k(t− t′)

k
dt′.

Put f(t) = e−k0t and re-obtain your answer to the first part of this question. Suppose
now that k0 = k. What is y(t)? Could you have found this solution by taking the limit in (1)
as k0 → k?

8 The Schrödinger equation is

i
∂u

∂t
+
∂2u

∂x2
= 0.

Suppose that u(x, 0) = f(x).
Fourier transform this equation with respect to x to find

u(x, t) =
e−iπ/4

2
√
πt

∫
∞

−∞

e
i(x−x

′)2

4t f(x′)dx′.

(You may it useful to recall that
∫
∞

−∞
eiu

2
du = e

iπ

4
√
π.)

Now use Laplace transform methods to find the same solution to this problem.
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9 A linear system has transfer function G(s), where s is the Laplace transform variable.
The output of the system is passed through a linear device with transfer function H(s) and
then provided to the input as a negative feedback. Show that the transfer function of the
system with feedback is G(s)/[1+G(s)H(s)]. Explain the Nyquist procedure for determining
the stability of the system with feedback by considering the variation of G(s)H(s) as s travels
round a path in the complex plane.

Consider the case

G(s) =
K

(1 + sT )Js2
, H(s) = 1 + bs

with the constants J , K, b and T all positive. Take the path for s to be composed of AB:
s = ix, ǫ < x < R; BC: s = Reiθ, 12π > θ > −1

2π; CD: s = ix,−R < x < −ǫ; DA:
s = ǫeiθ,−1

2π < θ < 1
2π. Describe the corresponding path in the ω plane, with ω = G(s)H(s).

In particular: (a) What is the image of BC? (b) Does each of the images of AB and CD
lie above or below the real axis; (c) What is the image of DA, paying particular attention
to whether the each of the images of A and D lie above or below the real axis. Deduce that
the system is stable if b > T and unstable if b < T . In the latter case how many zeros of
1 +G(s)H(s) are there in the right-hand half s-plane?

10 ∗ A simple version of the Klein-Gordon equation is

ψtt = ψxx − ψ. (2)

(This equation describes, amongst other things, the propagation of large-scale variations
in the height of the sea surface in the presence of rotation.)

(a) Solve this equation subject to the initial conditions ψ(x, 0) = 0, ψt(x, 0) = δ(x) using
Laplace transform methods. Show that, for t < |x|, ψ(x, t) = 0, and, for t > |x|,

ψ(x, t) =
1

2πi

∫
γ
est exp(−(1 + s2)1/2|x|) ds

2(1 + s2)1/2

where γ, followed anticlockwise, encloses a branch cut along the imaginary axis from s = −i
to s = i.

(b) Show that, defining the variable w by (t2 − x2)1/2w = st− (1 + s2)1/2|x|, the above
integral may be transformed to give

ψ(x, t) =
1

2πi

∫
γ
exp((t2 − x2)1/2w)

dw

2(1 + w2)1/2

with γ defined in the w-plane as in the s-plane.
(c) Show using Laplace’s method that J0(z), which is the solution of zy′′ + y′ + zy = 0

such that y(0) = 1 and y′(0) = 0 can be represented as

J0(z) =
1

2πi

∫
γ

ezs

(1 + s2)1/2
ds

with γ again as defined above. Deduce that the solution of (2) specified above for t > |x| may
be written as

ψ(x, t) =
1

2
J0((t

2 − x2)1/2).

Draw a sketch of the solution.


