
Classical Dynamics Mathematical Tripos, Part II
David Skinner Michaelmas Term 2023

Example Sheet 4

1. Verify the Jacobi identity for Poisson brackets,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .

2. A particle with mass m, position r and momentum p has angular momentum L =
r× p. Evaluate {xi, Lj}, {pi, Lj}, {Li, Lj} and {Li, |L|2}.
The Laplace–Runge–Lenz vector is defined as

A = p× L−mk r̂ ,

where k is a constant and r̂ = r/|r|. Show that {Li, Aj} = εijkAk. For a system
described by the Hamiltonian

H =
|p|2

2m
− k

|r|
,

show, using Poisson brackets, that A is conserved.

3. A particle of charge q moves in a time-independent background magnetic field B.
Show that {mẋi,mẋj} = qεijkBk and {xi,mẋj} = δij.

A magnetic monopole is a particle that produces a radial magnetic field of the form

B = g
r̂

r2
,

where g is a constant and r̂ = r/|r|. Consider a charged particle moving in the
background of the magnetic monopole. Define the generalized angular momentum,

J = m r× ṙ− qg r̂ .

Show that {J, H} = 0. Why does this imply that J is conserved?

4. In the lectures we constructed canonical transformations using generating functions.
Consider canonical transformations q 7→ Q(q,p), p 7→ P(q,p) from the following
perspective. Define the 2n-dimensional vector x = (q1, ..., qn, p1, ..., pn)> and the
2n× 2n matrix

Ω =

(
0 In
−In 0

)
,

where each entry is itself an n× n matrix.

(a) Write Hamilton’s equations for ẋ in terms of Ω and the Hamiltonian H.
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(b) Hence deduce the following equation for the vector X = (Q1, ..., Qn, P1, ..., Pn)>:

Ẋ =
(
JΩJ>

) ∂H
∂X

,

where JAB = ∂XA/∂xB (A,B = 1, . . . , 2n) is the Jacobian matrix of the trans-
formation. This implies that, if the Jacobian of a transformation satisfies

JΩJ> = Ω ,

then Hamilton’s equations are invariant under that transformation. The trans-
formations with such a Jacobian (said to be symplectic) are canonical.

(c) Use the above conclusion to prove that, if the Poisson bracket structure is pre-
served, then the transformation is canonical.

5. Show that the following transformations are canonical:

(a) P =
1

2
(p2 + q2) , Q = arctan

(
q

p

)
,

(b) P =
1

q
, Q = pq2 ,

(c) P = 2
√
q (1 +

√
q cos p) sin p , Q = log (1 +

√
q cos p) .

6. Show that the following transformation is canonical, for any constant λ:

q1 = Q1 cosλ+ P2 sinλ , q2 = Q2 cosλ+ P1 sinλ ,

p1 = −Q2 sinλ+ P1 cosλ , p2 = −Q1 sinλ+ P2 cosλ .

Given that the original Hamiltonian is

H(q,p) =
1

2

(
q21 + q22 + p21 + p22

)
,

determine the new Hamiltonian H(Q,P). Hence solve for the dynamics, subject to
the constraints Q2 = P2 = 0.

7. A group of particles, all of the same mass m, have initial heights z0 and vertical
momenta p0 lying in the rectangle −a 6 z0 6 a, −b 6 p0 6 b in phase space. The
particles fall freely in a uniform gravitational field for a time t. Find the region of
phase space in which they lie at time t, and show by direct calculation that its area
is still 4ab.

8. A Poisson structure on Rn is an antisymmetric matrix whose components πAB(x)
may depend on the coordinates xA ∈ Rn, A = 1, . . . , n, such that the Poisson
bracket

{f, g} =
∑
AB

πAB(x)
∂f

∂xA
∂g

∂xB

satisfies the Jacobi identity.
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(a) Show that

{fg, h} = f{g, h}+ {f, h}g .

(b) Assume that the matrix π is invertible, and suppose that its inverse is an anti-
symmetric matrix ω whose components ωAB(x) obey πAB(x)ωBC(x) = δAC for
all x. Show that ω satisfies

∂AωBC + ∂CωAB + ∂BωCA = 0

where ∂A =
∂

∂xA
. [Hint : Note that πAB = {xA, xB}.]

(c) Set xA = (x, y, z). Show that

{x, y} = z , {y, z} = x , {z, x} = y

defines a Poisson structure on R3, and find Hamilton’s equations corresponding
to a Hamiltonian H = αx2+βy2+γz2, where α, β and γ are non-zero constants.
Is this Poisson structure invertible?

9. Explain what is meant by an adiabatic invariant for a mechanical system with one
degree of freedom.

A light string passes through a small hole in the roof of a lift compartment of a
very high skyscraper, and a small weight is attached to the lower end. Initially,
the lift is at rest and the system behaves like a simple pendulum executing small
oscillations. Construct a Hamiltonian for the system and use the theory of adiabatic
invariants to discuss what happens to the frequency, linear and angular amplitudes
of the motion if:

(a) the lift begins to move upwards with slowly increasing acceleration, with the
string attached at the hole;

(b) the lift stays at rest, but the string is slowly withdrawn through the roof.

10. Consider a system with Hamiltonian

H =
p2

2m
+ λ q2n ,

where λ is a positive constant and n is a positive integer. Show that the action
variable I and the energy E are related by

E = λ1/(n+1)

(
nπI

Jn

)2n/(n+1)(
1

2m

)n/(n+1)

,

where Jn =
∫ 1

0
(1− x)1/2x(1−2n)/2n dx.

Consider a particle that moves in a potential V (q) = λ q4. Assuming that λ varies
slowly with time, show that the particle’s total energy E is proportional to λ1/3.
Conversely, in the case that λ is fixed, show that the period of the motion is pro-
portional to (λE)−1/4.

3



11. A pulsar of mass m moves in a planar orbit around a luminous supergiant star with
mass M � m. You may regard the supergiant as being fixed at the origin of a
plane-polar coordinate system (r, θ), and the neutron star as moving in a central
potential V (r) = −GMm/r. Construct the Hamiltonian for the motion, and show
that pθ and the total energy E are constants of motion.

The neutron star is in a non-circular orbit with E < 0. Give an expression for the
adiabatic invariant J(E, pθ,M) associated with the radial motion. The supergiant is
steadily losing mass in a radiatively driven wind. Show that, over a long timescale,
we have E ∝M2.

Eventually the supergiant becomes a supernova, throwing off its outer layers on a
short timescale, and leaving behind a remnant black hole of mass M/2. Explain
why the theory of adiabatic invariants cannot be used to calculate the new orbit.

[You may find the following integral helpful:∫ r2

r1

[(
1− r1

r

)(r2
r
− 1
)]1/2

dr =
π

2
(r1 + r2)− π

√
r1r2 ,

where 0 < r1 < r2.]

12. [Optional, based on 2010 Paper 4, Section II, Question 15D ]

A system is described by the Hamiltonian H(q, p, t). Define the Poisson bracket
{f, g} of two functions f(q, p, t) and g(q, p, t). Show from Hamilton’s equations that

df

dt
= {f,H}+

∂f

∂t
.

Consider the Hamiltonian

H =
1

2

(
p2 + ω2q2

)
,

where ω = ω(t), and define

a =
p− iωq√

2ω
, a∗ =

p+ iωq√
2ω

,

where i2 = −1. Evaluate {a, a} and {a, a∗}, and show that {a,H} = −iωa and
{a∗, H} = iωa∗. Show further that, when f(q, p, t) is regarded as a function of the
independent complex variables (a, a∗) and of t, one has

df

dt
= iω

(
a∗
∂f

∂a∗
− a∂f

∂a

)
− 1

2

ω̇

ω

(
a
∂f

∂a∗
+ a∗

∂f

∂a

)
+
∂f

∂t
.

Deduce that, in the case dω/dt = 0, both (log a∗−iωt) and (log a+iωt) are constant
during the motion.

Consider now the case in which ω(t) varies slowly with time. Writing f = (H/ω),
show that the time-average of (df/dt) over one period, (2π/ω), is approximately zero
(that is, to order (ω̇2, ω̈)). [Hint : You might like to start by writing a = A(t)e−iωt =
A(0)e−iωt +O(ω̇).]
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