Classical Dynamics Mathematical Tripos, Part II
David Skinner Michaelmas Term 2023

Example Sheet 4

1. Verify the Jacobi identity for Poisson brackets,
2. A particle with mass m, position r and momentum p has angular momentum L =

r X p. Evaluate {x;, L;;, ip;, L, i, L} an i) .
p. Evaluate {z;, L;}, {pi, L;}, {Li, L;} and {L;, |L[*}

The Laplace-Runge-Lenz vector is defined as
A=pXL-mkr,

where £ is a constant and r = r/|r|. Show that {L;, A;} = €;;,Ax. For a system
described by the Hamiltonian

pPF Ok

S 2m r|’
show, using Poisson brackets, that A is conserved.

3. A particle of charge ¢ moves in a time-independent background magnetic field B.
Show that {m;, mi,;} = qe;jx By and {z;, mz;} = 0;;.
A magnetic monopole is a particle that produces a radial magnetic field of the form

A

r
B:g7,_2’

where ¢ is a constant and r = r/|r|. Consider a charged particle moving in the
background of the magnetic monopole. Define the generalized angular momentum,

J=mrXxr—gqggr.
Show that {J, H} = 0. Why does this imply that J is conserved?

4. In the lectures we constructed canonical transformations using generating functions.
Consider canonical transformations q — Q(q,p), p — P(q,p) from the following
perspective. Define the 2n-dimensional vector x = (g1, ..., @n, 1, -, Pn) | and the
2n X 2n matrix

0 I
Q= .
where each entry is itself an n x n matrix.

(a) Write Hamilton’s equations for x in terms of Q and the Hamiltonian H.
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(b) Hence deduce the following equation for the vector X = (Q1, ..., Qn, P, ..., B,) '

X =(JJ") g—i ,

where J%, = 0X4/02P (A,B =1,...,2n) is the Jacobian matrix of the trans-
formation. This implies that, if the Jacobian of a transformation satisfies

0T =0,

then Hamilton’s equations are invariant under that transformation. The trans-
formations with such a Jacobian (said to be symplectic) are canonical.

(c) Use the above conclusion to prove that, if the Poisson bracket structure is pre-
served, then the transformation is canonical.

. Show that the following transformations are canonical:

(a) P= %(pQ—FqQ}, () = arctan (%) ,
(b) :a Q=pq,
(c) P=2/q(1+4 /qcosp)sinp, Q =log(1+ \/qcosp) .

. Show that the following transformation is canonical, for any constant A:

g1 = Q1cos XA+ Pysin A, go = Qacos A + P sin \,
p1 = —Qosin X\ + P cos \, po = —Qsin A + Pycos \.

Given that the original Hamiltonian is

H(a,p) == (¢ +& +p; +p3) ,

N | —

determine the new Hamiltonian H(Q, P). Hence solve for the dynamics, subject to
the constraints Qo = P, = 0.

. A group of particles, all of the same mass m, have initial heights z; and vertical
momenta py lying in the rectangle —a < zp < a, —b < py < b in phase space. The
particles fall freely in a uniform gravitational field for a time ¢. Find the region of
phase space in which they lie at time ¢, and show by direct calculation that its area
is still 4ab.

. A Poisson structure on R" is an antisymmetric matrix whose components WAB(QT)
may depend on the coordinates z4 € R™, A = 1,...,n, such that the Poisson

bracket

of o
1.9} = ;w“%)@%—i

satisfies the Jacobi identity.



10.

(a) Show that
{fg.h}y = flg.h} +{f. h}g.

(b) Assume that the matrix 7 is invertible, and suppose that its inverse is an anti-
symmetric matrix w whose components wag(z) obey 748 (z) wpc(z) = §% for
all z. Show that w satisfies

dawpc + Ocwap + Opwea =0
where 04 = %. [Hint: Note that 748 = {24, 258} ]
(c) Set 2 = (x,y, z). Show that

{:L“,y}:Z, {y,Z}ZZE, {va}:y

defines a Poisson structure on R?, and find Hamilton’s equations corresponding
to a Hamiltonian H = ax?®+ By +v22, where «, 3 and 7y are non-zero constants.
Is this Poisson structure invertible?

. Explain what is meant by an adiabatic invariant for a mechanical system with one

degree of freedom.

A light string passes through a small hole in the roof of a lift compartment of a
very high skyscraper, and a small weight is attached to the lower end. Initially,
the lift is at rest and the system behaves like a simple pendulum executing small
oscillations. Construct a Hamiltonian for the system and use the theory of adiabatic
invariants to discuss what happens to the frequency, linear and angular amplitudes
of the motion if:

(a) the lift begins to move upwards with slowly increasing acceleration, with the
string attached at the hole;

(b) the lift stays at rest, but the string is slowly withdrawn through the roof.

Consider a system with Hamiltonian

P?
H=—4+ )¢,
2m
where ) is a positive constant and n is a positive integer. Show that the action

variable I and the energy E are related by

b )\1/(”+1) nl 2n/(n+1) 1 n/(n+1)
N g, 2m ’

where J, = fol(l — )2 (=) /20 gy

Consider a particle that moves in a potential V(g) = X ¢*. Assuming that \ varies
slowly with time, show that the particle’s total energy E is proportional to \/3.
Conversely, in the case that A is fixed, show that the period of the motion is pro-
portional to (AE)~1/4.



11.

12.

A pulsar of mass m moves in a planar orbit around a luminous supergiant star with
mass M > m. You may regard the supergiant as being fixed at the origin of a
plane-polar coordinate system (r,6), and the neutron star as moving in a central
potential V(r) = —GMm/r. Construct the Hamiltonian for the motion, and show
that py and the total energy E are constants of motion.

The neutron star is in a non-circular orbit with £/ < 0. Give an expression for the
adiabatic invariant J(FE, ps, M) associated with the radial motion. The supergiant is

steadily losing mass in a radiatively driven wind. Show that, over a long timescale,
we have E oc M?2.

Eventually the supergiant becomes a supernova, throwing off its outer layers on a
short timescale, and leaving behind a remnant black hole of mass M /2. Explain
why the theory of adiabatic invariants cannot be used to calculate the new orbit.

[You may find the following integral helpful:

T2 1/2
/ [(1—T—1> <T—2—1>] dT’:Z(Tl—f—Tg)—ﬂ' rirs,
" r r 2

where 0 < 71 < 79.]

[Optional, based on 2010 Paper 4, Section II, Question 15D]

A system is described by the Hamiltonian H(q,p,t). Define the Poisson bracket
{f, g} of two functions f(q,p,t) and g(q,p,t). Show from Hamilton’s equations that

df of

- = H -

o = U HE+ o
Consider the Hamiltonian

H:%(pz—i—(fqz) :

where w = w(t), and define

_p—iwq a*_p+iwq
V2w V2w
where 2 = —1. Evaluate {a,a} and {a,a*}, and show that {a, H} = —iwa and

{a*, H} = iwa*. Show further that, when f(q,p,t) is regarded as a function of the
independent complex variables (a,a*) and of ¢, one has

df .(ﬁf 0f) 1w(3f ﬁf) of
—=1wla —a—=-

2w

dt oa* “aa a@a*—i_a% +E'

Deduce that, in the case dw/dt = 0, both (log a* —iwt) and (log a+iwt) are constant
during the motion.

Consider now the case in which w(t) varies slowly with time. Writing f = (H/w),
show that the time-average of (df /dt) over one period, (27 /w), is approximately zero
(that is, to order (w?,&)). [Hint: You might like to start by writing a = A(t)e ™! =
A(0)e ™" + O(w).]



