
Classical Dynamics Mathematical Tripos, Part II
Lecturer: David Stuart MT 2024

Example Sheet 1

1. A circular hoop of radius a lies in a vertical plane. The hoop rotates with constant
angular velocity ω around a fixed vertical axis that goes through its centre, O. A
bead of mass m is threaded on the hoop and moves without friction. Its location is
denoted by A. The angle between the line OA and the downward vertical is ψ(t).

(a) Using the Lagrangian formalism, derive a second-order differential equation for
ψ(t).

(b) Assume now that the hoop rotates freely about the vertical axis without friction.
Write down the Lagrangian of the system, neglecting the mass of the hoop. Find
the additional conserved quantity.

2. A double pendulum is drawn below. Two light rods, of lengths l1 and l2, oscillate
in the same plane. Attached to them are masses m1 and m2. How many degrees of
freedom does the system have? Write down the Lagrangian describing the dynamics.
Derive the equations of motion.

l1

l2

m1

m2

θ1

θ2

3. The pivot of a simple pendulum is attached to the rim of a disc of radius R, which
rotates about its centre in the plane of the pendulum with constant angular velocity
ω. (See the diagram below.) Write down the Lagrangian and derive the equation
of motion for the dynamical variable θ.

l

R

m

θ

ω
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4. A particle of mass m1 is restricted to move on a circle of radius R1 in the plane
z = 0, with centre at (x, y) = (0, 0). A second particle, of mass m2, is restricted to
move on a circle of radius R2 in the plane z = c, with centre at (x, y) = (0, a). The
two particles are connected by a spring; the resulting potential energy is

V =
1

2
ω2d2 ,

where d is the distance between the particles.

(a) Identify the two generalized coordinates and write down the Lagrangian of the
system.

(b) Write down the Lagrangian in the case that one circle lies directly beneath the
other, a = 0, and identify a conserved quantity that appears in this case.

5. Two particles, each of mass m, are connected by a light rope of length l. One
particle moves on a smooth horizontal table at a variable distance r from a hole,
through which the rope is threaded. The second particle hangs beneath the table.

(a) Assume initially that the second particle hangs directly beneath the hole. Write
down the Lagrangian of the system in terms of r and a variable ψ, describing
the angle that the first particle makes with respect to a fixed axis. Identify
an ignorable coordinate. Write down the equation of motion for the remaining
coordinate, assuming that the rope remains taut.

(b) Assume now that the second particle oscillates beneath the table, as a spherical
pendulum. How many degrees of freedom does the system now have? Write
down the Lagrangian describing this motion, assuming that the rope remains
taut at all times. How many ignorable coordinates are there?

6. An electron, of mass m and charge −e, moves in a magnetic field B = ∇×A(r).
The Lagrangian for the motion is

L =
1

2
m|ṙ|2 − e ṙ ·A(r) .

Show that Lagrange’s equations reproduce the Lorentz force law for the electron.

(a) With respect to cylindrical polar coordinates (r, θ, z), consider the vector po-
tential

A =
f(r)

r
eθ ,

where eθ is the unit vector in the θ direction. At some initial time, the electron
is at a distance r0 from the z axis; its velocity is then in the (r, z) plane. Show
that the electron’s angular velocity about the z axis is given by

θ̇ =
e

mr2
[f(r)− f(r0)] .
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(b) (Again, with respect to cylindrical polar coordinates.) Consider the (different)
vector potential,

A = rg(z) eθ ,

where g(z) > 0. Find two constants of the motion. The electron is projected
from a point (r0, θ0, z0) with velocity (2er0g(z0)/m) eθ. Show that the electron
will then describe a circular orbit, provided that g′(z0) = 0. Show that this orbit
is stable against small translations in the z direction, provided that g′′(z0) > 0.

7. The Lagrangian for a relativistic point particle of mass m is

L = −mc2
√

1− |ṙ|2
c2

− V (r) ,

where c is the speed of light. Derive the equation of motion, and show that it reduces
to Newton’s equation of motion in the limit |ṙ| ≪ c.

8. Consider a system with n dynamical degrees of freedom, and generalized coordinates
denoted by qa, with a = 1, . . . , n. The most general form for a purely kinetic
Lagrangian is

L =
1

2
gab(q

1, ..., qn)q̇aq̇b , (∗)

where the summation convention is being used. The functions gab = gba depend on
the generalized coordinates. Assume that det(gab) ̸= 0 so that the inverse matrix
gab exists (obeying gabgbc = δac). Show that Lagrange’s equations for this system
are given by

q̈a + Γabcq̇
bq̇c = 0 , (†)

where you should define the objects Γabc, which depend on the coordinates qd through
g and its first derivatives. (You may assume they are symmetric in the lower indices,
i.e., Γabc = Γacb.)

Write down a conserved quantity for the equations (†), and for the case n = 4
with g11 = g22 = g33 = +1 and g44 = −1 and compare with the concept of proper
time from the Dynamics and Relativity notes. Optional: In the case g11 = g22 =
g33 = +1 and g44 = −(1 + 2V ) with V = V (q1, q2, q3) and {q̇i}3i=1 very small,
work out (†) to first order of approximation and interpret. (Working to first order
means you can throw away terms quadratic in the small quantities V, ∂iV, q̇

i.....
This calculation is behind the Newtonian approximation of general relativity, see
pp. 77-79 in Weinberg’s book Gravitation and Cosmology.)

Please send any comments and corrections to dmas2@cam.ac.uk
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Classical Dynamics Mathematical Tripos, Part II
Lecturer: David Stuart MT 2024

Example Sheet 2

1. The linear triatomic molecule drawn below consists of two identical outer atoms of
mass m and a middle atom of mass M . It is a rough approximation to CO2.

Mm m

The interactions between neighbouring atoms are governed by a complicated poten-
tial V (|ri+1 − ri|). If we restrict attention to motion in the x direction parallel to
the molecule, the Lagrangian is

L =
1

2
mẋ21 +

1

2
Mẋ22 +

1

2
mẋ23 − V (x2 − x1)− V (x3 − x2) ,

where xi is the position of the ith particle. Let r0 = |xi+1 − xi| be the separation of
neighbouring atoms in equilibrium. Write down the equation describing small devi-
ations from equilibrium in terms of the masses and the quantity k = V ′′(r0). Show
that the system has three normal modes and calculate the frequencies of oscillation
of the system. One of these frequencies vanishes; what is the interpretation of this?

2. A horizontal square wire frame with vertices ABCD and side length 2a rotates with
constant angular velocity ω about a vertical axis through A. A bead of mass m is
threaded on BC and moves without friction. The bead is connected to B and C by
two identical light springs of spring constant k and equilibrium length a.

(a) Introducing the displacement η(t) of the particle from the midpoint of BC,
determine the Lagrangian L(η, η̇).

(b) Derive the equation of motion and identify the constant of the motion.

(c) Describe the motion of the bead. Find the condition for there to be a stable
equilibrium and find the frequency of small oscillations about it when it exists.
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3. A pendulum consists of a mass m at the end of light rod of length l. The pivot of
the pendulum is attached to a mass M , which is free to slide without friction along
a horizontal rail. Take the generalized coordinates to be the position x of the pivot
and the angle θ that the pendulum makes with the vertical.

(a) Write down the Lagrangian and derive the equations of motion.

(b) Find the non-zero frequency of small oscillations around the stable equilibrium.

(c) Now suppose that a force acts on the the mass M , causing it to travel with
constant acceleration a in the positive x direction. Find the equilibrium angle
θ of the pendulum.

4. Two equal masses m are connected to each other and to fixed points by three
identical springs of spring constant k as shown below. Write down the equations
describing the motion of the system in the direction parallel to the springs. Find
the normal modes and their frequencies.

m m

k k k

5. Show that, for any solid body, the sum of any two principal moments of inertia is
not less than the third. For what shapes is the sum of two equal to the third?

Calculate the moments of inertia of:

(a) A uniform solid sphere of mass M and radius R about a diameter.

(b) A hollow sphere of mass M and radius R about a diameter.

(c) A uniform solid circular cone of mass M , height h and base radius R with
respect to the principal axes whose origin is at the vertex of the cone.

(d) A uniform solid cylinder of radius R, height 2h and mass M about its centre of
mass. For what height-to-radius ratio does the cylinder spin like a sphere?

(e) A uniform solid ellipsoid of mass M and semi-axes a, b and c, defined by

x2

a2
+
y2

b2
+
z2

c2
⩽ 1

with respect to the (x, y, z) axes with origin at the centre of mass. [Hint: With
a change of coordinates, you can reduce this problem to that of the solid sphere.]

6. A cylindrical shell of radius R2 rolls, without slipping, on a fixed cylinder of radius
R1 as shown below. Denote the angle through the centre of the first cylinder and
the point of contact by θ. Denote the angle of a marked point on the upper cylinder
with respect to a vertical axis by ϕ. Assume that the upper cylinder starts perched
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near the top at θ = 0, and that it rolls without slipping, acted upon by gravity.
Show that the constraint for small θ is

R1θ = R2(ϕ− θ) . (∗)

Is this constraint holonomic? Can the system be described by holonomic constraints
for all θ? Write down the Lagrangian for the system assuming that this constraint
holds. (Remember that the cylinder has kinetic energy both from the translation of
its centre of mass and also from its spin.) Work out the equation of motion for θ. If
the upper cylinder starts from rest at θ = 0, show that it falls off the lower cylinder
at θ = π/3.

R1

R2

θ

φ

[Note: The question of when the cylinder falls off is not obviously captured by the
Lagrangian you wrote down, which assumes the constraint (∗) holds. To solve this
you will have to revert to Newtonian thinking and consider the constraint forces at
play.]

7. A bead of mass 1 slides without friction on a fixed horizontal wire which occupies
the interval [−a, a] of the x-axis. A light spring, of spring constant 1, connects the
bead to the point −a, and a second light spring, with the same spring constant,
connects the bead to the point a. A massless rod of length 1 hangs freely from the
bead and its other end carries a particle also of unit mass. The motion is restricted
to the vertical plane containing the wire.

(a) Show that the Lagrangian for the system is

L =
1

2
ẋ2 +

1

2
(ẋ2 + 2 cos θ ẋθ̇ + θ̇2)− x2 + g cos θ ,

where x is the position of the bead on the wire, θ is the angle between the rod
and the downward vertical, and g is the acceleration due to gravity, and hence
write down the equations of motion.

(b) Put g = 1. Find any equilibrium points, and expand the Lagrangian to quadratic
order about them, and hence determine their stability or otherwise (optional).

Please send any comments and corrections to dmas2@cam.ac.uk
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Classical Dynamics Mathematical Tripos, Part II
Lecturer: David Stuart MT 2024

Example Sheet 3

1. Inertia tensor

(a) Prove that the principal moments of inertia, (I1, I2, I3), are real and non-negative.

(b) During the lectures we outlined the proof of the Parallel Axis Theorem, which is a
statement that the inertia tensor about a point P , which is displaced by c from the
centre of mass C, is related to the inertia tensor about C by

IPab = ICab +M(c2δab − cacb) ,

where M is the total mass of the body. Complete the proof of the theorem. (It will
be helpful to choose the origin to be at the centre of mass.)

2. Euler angles

The rotation matrix that relates the body axes (e1, e2, e3) to the space axes (ex, ey, ez) is
given in terms of the Euler angles (θ(t), ϕ(t), ψ(t)) by

R = R3(ψ)Rn(θ)Rz(ϕ)

=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 .

(a) Calculate the matrix A = ṘR⊤ and verify that it is antisymmetric. By identifying A
as the antisymmetric matrix associated with the angular velocity vector in the body
frame, deduce thatω1

ω2

ω3

 =

 θ̇ cosψ + ϕ̇ sin θ sinψ

−θ̇ sinψ + ϕ̇ sin θ cosψ

ψ̇ + ϕ̇ cos θ

 .

(b) * [optional extra] Calculate the matrix B = R⊤Ṙ and verify that it is antisymmetric.
By identifying B as the antisymmetric matrix associated with the angular velocity
vector in the space frame, deduce thatωxωy

ωz

 =

θ̇ cosϕ+ ψ̇ sin θ sinϕ

θ̇ sinϕ− ψ̇ sin θ cosϕ

ϕ̇+ ψ̇ cos θ

 .
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3. Free symmetric top

(a) Consider the torque-free motion of a round plate. Show that, in the body frame,
the angular velocity vector ω precesses around the body axis e3 perpendicular to the
plate with constant angular frequency equal to ω3.

(b) The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the
air. As the plate went up in the air I saw it wobble, and I noticed the red
medallion of Cornell on the plate going around. It was pretty obvious to me
that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.
I discover that when the angle is very slight, the medallion rotates twice as
fast as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the
electron orbits start to move in relativity. Then there’s the Dirac equation
in electrodynamics. And then quantum electrodynamics. And before I knew
it....the whole business that I got the Nobel prize for came from that piddling
around with the wobbling plate.”

[Here the ‘wobble’ is associated with precession of the top about ez (motion in ϕ),
not nutation (motion in θ).]

Feynman was right about quantum electrodynamics. But what about the plate?

[You could try two alternative methods. First, by using the expression for ω3 in terms
of Euler’s angles together with the result of part (a). Second, by writing down the
Lagrangian of the top and deriving the equation of motion for θ.]

(c) Consider a uniform symmetric ellipsoid of mass M with semi-axes a = b ̸= c (see
Example 2.5(e)). Find the ratio of the semi-axes for which ϕ̇, the angular frequency
of precession of the top about the angular momentum L, equals ω3/(5 cos θ). Deduce
further that ψ̇ = 4

5
ω3. What is the relationship between ϕ̇ and ψ̇ for small values

of θ? Compare with the result obtained in part (b).

4. Free asymmetric top (1)

(a) Throw a book in the air. (Secure it with an elastic band first!) If the principal
moments of inertia are I3 > I2 > I1, convince yourself that the book can rotate in a
stable manner about the principal axes e1 and e3, but not about e2.

(b) Use Euler’s equations to show that the energy E and the squared angular momentum
|L|2 of a free asymmetric top are conserved. Suppose that the initial conditions are
such that

|L|2 = 2EI2 ,

with the initial angular velocity ω perpendicular to the intermediate principal axis e2.
Show that ω will ultimately end up parallel to e2. What is the characteristic timescale
required to reach this steady state?
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5. Free asymmetric top (2)

A rigid lamina (i.e. a two-dimensional object) has principal moments of inertia about the
centre of mass given by

I1 = (µ2 − 1) , I2 = (µ2 + 1) , I3 = 2µ2 ,

where µ > 1. Write down Euler’s equations for the lamina moving freely in space. Show
that the component of the angular velocity in the plane of the lamina (i.e.

√
ω2
1 + ω2

2) is
constant in time.

Choose the initial angular velocity to be ω = µNe1 +Ne3. Define tanα = ω2/ω1, which
is the angle the component of ω in the plane of the lamina makes with e1. Show that it
satisfies

α̈ +N2 cosα sinα = 0

and deduce that, at time t,

ω = µN sech(Nt) e1 + µN tanh(Nt) e2 +N sech(Nt) e3 .

6. Lagrange top

Consider a heavy symmetric top of mass M , fixed at the point P which is a distance l
from the centre of mass. The principal moments of inertia about P are (I1, I1, I3) and the
Euler angles are defined as in the lectures. The top is spun with initial conditions ϕ̇ = 0
and θ = θ0. Show that θ obeys the equation of motion

I1θ̈ = −dVeff
dθ

,

where

Veff(θ) =
I23ω

2
3

2I1

(cos θ − cos θ0)
2

sin2 θ
+Mgl cos θ .

Suppose that the top is spinning very fast so that

I3ω3 ≫
√
MglI1 .

Show that the minimum of Veff(θ) is close to θ0. Use this fact to deduce that the top
nutates with angular frequency

Ω ≈ I3
I1
ω3 ,

and sketch the subsequent motion.
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7. Lagrange top in Hamiltonian formalism

The Lagrangian for the heavy symmetric top is

L =
1

2
I1(θ̇

2 + ϕ̇2 sin2 θ) +
1

2
I3(ψ̇ + ϕ̇ cos θ)2 −Mgl cos θ .

Find the conjugate momenta pθ, pϕ and pψ and the Hamiltonian H(θ, ϕ, ψ, pθ, pϕ, pψ).
Derive Hamilton’s equations.

8. Hamilton’s equations

A system with two degrees of freedom x and y has the Lagrangian

L = xẏ + yẋ2 + ẋẏ .

Derive Lagrange’s equations. Obtain the Hamiltonian H(x, y, px, py). Derive Hamilton’s
equations and show that they are equivalent to Lagrange’s equations.

Please send any comments and corrections to dmas2@cam.ac.uk
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Classical Dynamics Mathematical Tripos, Part II
Lecturer: David Stuart MT 2024

Example Sheet 4

1. Verify the Jacobi identity for Poisson brackets,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .

2. A particle with mass m, position r and momentum p has angular momentum L =
r× p. Evaluate {xi, Lj}, {pi, Lj}, {Li, Lj} and {Li, |L|2}.
The Laplace–Runge–Lenz vector is defined as

A = p× L−mk r̂ ,

where k is a constant and r̂ = r/|r|. Show that {Li, Aj} = ϵijkAk. For a system
described by the Hamiltonian

H =
|p|2

2m
− k

|r|
,

show, using Poisson brackets, that A is conserved.

3. A particle of charge q moves in a time-independent background magnetic field B.
Show that {mẋi,mẋj} = qϵijkBk and {xi,mẋj} = δij.

A magnetic monopole is a particle that produces a radial magnetic field of the form

B = g
r̂

r2
,

where g is a constant and r̂ = r/|r|. Consider a charged particle moving in the
background of the magnetic monopole. Define the generalized angular momentum,

J = m r× ṙ− qg r̂ .

Show that {J, H} = 0. Why does this imply that J is conserved?

4. In the lectures we constructed canonical transformations using generating functions.
Consider canonical transformations q 7→ Q(q,p), p 7→ P(q,p) from the following
perspective. Define the 2n-dimensional vector x = (q1, ..., qn, p1, ..., pn)

⊤ and the
2n× 2n matrix

Ω =

(
0 In

−In 0

)
,

where each entry is itself an n× n matrix.

(a) Write Hamilton’s equations for ẋ in terms of Ω and the Hamiltonian H.
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(b) Hence deduce the following equation for the vector X = (Q1, ..., Qn, P1, ..., Pn)
⊤:

Ẋ =
(
JΩJ⊤

) ∂H
∂X

,

where JAB = ∂XA/∂xB (A,B = 1, . . . , 2n) is the Jacobian matrix of the trans-
formation. This implies that, if the Jacobian of a transformation satisfies

JΩJ⊤ = Ω ,

then Hamilton’s equations are invariant under that transformation. The trans-
formations with such a Jacobian (said to be symplectic) are canonical.

(c) Use the above conclusion to prove that, if the Poisson bracket structure is pre-
served, then the transformation is canonical. Is it necessarily the case that a
transformation which takes Hamiltonian equations into Hamiltonian equations
is canonical?

5. Show that the following transformations are canonical:

(a) P =
1

2
(p2 + q2) , Q = arctan

(
q

p

)
,

(b) P =
1

q
, Q = pq2 ,

(c) P = 2
√
q (1 +

√
q cos p) sin p , Q = log (1 +

√
q cos p) .

6. Show that the following transformation is canonical, for any constant λ:

q1 = Q1 cosλ+ P2 sinλ , q2 = Q2 cosλ+ P1 sinλ ,

p1 = −Q2 sinλ+ P1 cosλ , p2 = −Q1 sinλ+ P2 cosλ .

Given that the original Hamiltonian is

H(q,p) =
1

2

(
q21 + q22 + p21 + p22

)
,

determine the new Hamiltonian H(Q,P). Hence solve for the dynamics, subject to
the constraints Q2 = P2 = 0.

7. A group of particles, all of the same mass m, have initial heights z0 and vertical
momenta p0 lying in the rectangle −a ⩽ z0 ⩽ a, −b ⩽ p0 ⩽ b in phase space. The
particles fall freely in a uniform gravitational field for a time t. Find the region of
phase space in which they lie at time t, and show by direct calculation that its area
is still 4ab.

8. Explain what is meant by an adiabatic invariant for a mechanical system with one
degree of freedom.

A light string passes through a small hole in the roof of a lift compartment of a
very high skyscraper, and a small weight is attached to the lower end. Initially,
the lift is at rest and the system behaves like a simple pendulum executing small
oscillations. Construct a Hamiltonian for the system and use the theory of adiabatic
invariants to discuss what happens to the frequency, linear and angular amplitudes
of the motion if:
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(a) the lift begins to move upwards with slowly increasing acceleration, with the
string attached at the hole;

(b) the lift stays at rest, but the string is slowly withdrawn through the roof.

9. Consider a system with Hamiltonian

H =
p2

2m
+ λ q2n ,

where λ is a positive constant and n is a positive integer. Show that the action
variable I and the energy E are related by

E = λ1/(n+1)

(
nπI

Jn

)2n/(n+1)(
1

2m

)n/(n+1)

,

where Jn =
∫ 1

0
(1− x)1/2x(1−2n)/2n dx.

Consider a particle that moves in a potential V (q) = λ q4. Assuming that λ varies
slowly with time, show that the particle’s total energy E is proportional to λ1/3.
Conversely, in the case that λ is fixed, show that the period of the motion is pro-
portional to (λE)−1/4.

10. A pulsar of mass m moves in a planar orbit around a luminous supergiant star with
mass M ≫ m. You may regard the supergiant as being fixed at the origin of a
plane-polar coordinate system (r, θ), and the neutron star as moving in a central
potential V (r) = −GMm/r. Construct the Hamiltonian for the motion, and show
that pθ and the total energy E are constants of motion.

The neutron star is in a non-circular orbit with E < 0. Give an expression for the
adiabatic invariant J(E, pθ,M) associated with the radial motion. The supergiant is
steadily losing mass in a radiatively driven wind. Show that, over a long timescale,
we have E ∝M2.

Eventually the supergiant becomes a supernova, throwing off its outer layers on a
short timescale, and leaving behind a remnant black hole of mass M/2. Explain
why the theory of adiabatic invariants cannot be used to calculate the new orbit.

[You may find the following integral helpful:∫ r2

r1

[(
1− r1

r

)(r2
r
− 1

)]1/2
dr =

π

2
(r1 + r2)− π

√
r1r2 ,

where 0 < r1 < r2.]

11. [Optional, based on 2010 Paper 4, Section II, Question 15D ]

A system is described by the Hamiltonian H(q, p, t). Define the Poisson bracket
{f, g} of two functions f(q, p, t) and g(q, p, t). Show from Hamilton’s equations that

df

dt
= {f,H}+ ∂f

∂t
.
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Consider the Hamiltonian

H =
1

2

(
p2 + ω2q2

)
,

where ω = ω(t), and define

a =
p− iωq√

2ω
, a∗ =

p+ iωq√
2ω

,

where i2 = −1. Evaluate {a, a} and {a, a∗}, and show that {a,H} = −iωa and
{a∗, H} = iωa∗. Show further that, when f(q, p, t) is regarded as a function of the
independent complex variables (a, a∗) and of t, one has

df

dt
= iω

(
a∗
∂f

∂a∗
− a

∂f

∂a

)
− 1

2

ω̇

ω

(
a
∂f

∂a∗
+ a∗

∂f

∂a

)
+
∂f

∂t
.

Deduce that, in the case dω/dt = 0, both (log a∗−iωt) and (log a+iωt) are constant
during the motion.

Consider now the case in which ω(t) varies slowly with time. Writing f = (H/ω),
show that the time-average of (df/dt) over one period, (2π/ω), is approximately zero
(that is, to order (ω̇2, ω̈)). [Hint : You might like to start by writing a = A(t)e−iωt =
A(0)e−iωt +O(ω̇).]

Please send any comments and corrections to dmas2@cam.ac.uk
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