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Partial Differential Equations Example sheet 1

David Stuart
dmas2@cam.ac.uk

Books

In addition to the sets of lecture notes written by previous lecturers ([1, 2]) which
are still useful, the books [4, 3] are very good for the PDE topics in the course,
and go well beyond the course also. If you want to read more on distributions [6]
is most relevant. Also [7, 8] are useful; the books [5, 9] are more advanced, but
may be helpful.
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1 Introduction

1.1 Notation

We write partial derivatives as ∂t = ∂
∂t

, ∂j = ∂
∂xj

etc and also use suffix on a function

to indicate partial differentiation: ut = ∂tu etc. A general kth order linear partial
differential operator (pdo) acting on functions u = u(x1, . . . xn) is written:

P =
∑

|α≤k

aα∂αu . (1.1)

Here α = (α1, . . . αn) ∈ Z
n
+ is a multi-index of order |α| =

∑

αj and

∂α =
∏

∂
αj

j , xα =
∏

x
αj

j . (1.2)

For a multi-index we define the factorial α! =
∏

αj!. For (real or complex) con-
stants aα the formula (1.1) defines a constant coefficient linear pdo of order k. (Of
course assume always that at least one of the aα with |α| = k is non-zero so that it
is genuinely of order k.) If the coefficients depend on x it is a variable coefficient
linear pdo. The word linear means that

P (c1u1 + c2u2) = c1Pu1 + c2Pu2 (1.3)

holds for P applied to Ck functions u1, u2 and arbitrary constants c1, c2.

1.2 Basic definitions

If the coefficients depend on the partial derivatives of a function of order strictly
less than k the operator

u 7→ Pu =
∑

|α≤k

aα(x, {∂βu}|β|<k) ∂αu (1.4)

is called quasi-linear and (1.3) no longer holds. The corresponding equation Pu = f
for f = f(x) is a quasi-linear partial differential equation (pde). In such equations
the partial derivatives of highest order - which are often most important - occur
linearly. If the coefficients of the partial derivatives of highest order in a quasi-
linear operator P depend only on x (not on u or its derivatives) the equation is
called semi-linear. If the partial derivatives of highest order appear nonlinearly the
equation is called fully nonlinear; such a general pde of order k may be written

F (x, {∂αu}|α|≤k) = 0 . (1.5)

Definition 1.2.1 A classical solution of the pde (1.5) on an open set Ω ⊂ R
n is a

function u ∈ Ck(Ω) which is such that F (x, {∂αu(x)}|α|≤k) = 0 for all x ∈ Ω .

Classical solutions do not always exist and we will define generalized solutions
later in the course. The most general existence theorem for classical solutions is the
Cauchy-Kovalevskaya theorem, to state which we need the following definitions:
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Definition 1.2.2 Given an operator (1.1) we define

• Pprincipal =
∑

|α=k aα∂αu , (principal part)

• p =
∑

|α≤k aα(iξ)α , ξ ∈ R
n , (total symbol)

• σ =
∑

|α=k aα(iξ)α , ξ ∈ R
n , (principal symbol)

• Charx(P ) = {ξ ∈ R
n : σ(x, ξ) = 0} , (the set of characteristic vectors at x)

• Char(P ) = {(x, ξ) : σ(x, ξ) = 0} = ∪xCharx(P ) , (characteristic variety) .

Clearly σ, p depend on (x, ξ) ∈ R
2n for variable coefficient linear operators, but are

independent of x in the constant coefficient case. For quasi-linear operators we
make these definitions by substituting in u(x) into the coefficients, so that p, σ and
(also the definition of characteristic vector) depend on this u(x).

Definition 1.2.3 The operator (1.1) is elliptic at x (resp. everywhere) if the
principal symbol is non-zero for non-zero ξ at x (resp. everywhere). (Again the
definition of ellipticity in the quasi-linear case depends upon the function u(x) in
the coefficients.)

The elliptic operators are an important class of operators, and there is a well-
developed theory for elliptic equations Pu = f . Other important classes of opera-
tors are the parabolic and hyperbolic operators: see below for defintions of classes
of parabolic and hyperbolic operators of second order.

1.3 The Cauchy-Kovalevskaya theorem

The Cauchy problem is the problem of showing that for a given pde and given
data on a hypersurface S ⊂ R

n there is a unique solution of the pde which agrees
with the data on S. This is a generalization of the initial value problem for
ordinary differential equations, and by analogy the appropriate data to be given
on S consists of u and its normal derivatives up to order k−1. A crucial condition
is the following:

Definition 1.3.1 A hypersurface S is non-characteristic at a point x if its normal
vector n(x) is non-characteristic, i.e. σ(x, n(x)) 6= 0. We say that S is non-
characteristic if it is non-characteristic for all x ∈ S.)

Again for quasi-linear operators it is necessary to substitute u(x) to make sense of
this definition, so that whether or not a hypersurface is non-characteristic depends
on u(x), which amounts to saying it depends on the data which are given on S.

Theorem 1.3.2 (Cauchy-Kovalevskaya theorem) In the real analytic case there
is a local solution to the Cauchy problem for a quasi-linear pde in a neighbourhood
of a point as long as the hypersurface is non-characteristic at that point.

3



C
op

yr
ig

ht
 ©

 2
01

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

This becomes clearer with a suitable choice of coordinates which emphasizes
the analogy with ordinary differential equations: let the hypersurface be the level
set xn = t = 0 and let x = (x1, . . . xn−1) be the remaining n− 1 coordinates. Then
a quasi-linear P takes the form

Pu = a0k∂
k
t +

∑

|α|+j≤k,j<k

ajα∂
j
t ∂

αu (1.6)

with the coefficients depending on derivatives of order < k, as well as on (x, t).
Since the normal vector to t = 0 is n = (0, 0, . . . 0, 1) ∈ R

n the non-characteristic
condition is just a0k 6= 0, and ensures that the quasi-linear equation Pu = f can
be solved for ∂k

t u in terms of {∂j
t ∂

αu}|α|+j≤k,j<k to yield an equation of the form:

∂k
t u = G(x, t, {∂j

t ∂
αu}|α|+j≤k,j<k) (1.7)

to be solved with data

u(x, 0) = φ0(x), ∂tu(x, 0) = φ1(x) . . . ∂k−1

t u(x, 0) = φk−1(x) . (1.8)

Notice that these data determine, for all j < k, the derivatives

∂
j
t ∂

αu(x, 0) = ∂αφj(x) , (1.9)

(i.e. those involving fewer than k normal derivatives ∂t) on the initial hypersurface.

Theorem 1.3.3 Assume that φ0, . . . φk−1 are all real analytic functions in some
neighbourhood of a point x0 and that G is a real analytic function of its arguments
in a neighbourhood of (x0, 0, {∂αφj(x0)}|α|+j≤k,j<k). Then there exists a unique real
analytic function which satisfies (1.8)-(1.7) in some neighbourhood of the point x0.

Notice that the non-characteristic condition ensures that the kth normal derivative
∂k

t u(x, 0) is determined by the data through the equation. Differentiation of (1.7)
gives further relations which can be shown to determine all derivatives of the
solution at t = 0, and the theorem can be proved by showing that the resulting
Taylor series defines a real-analytic solution of the equation. Read section 1C of
the book of Folland for the full proof.

In the case of first order equations with real coefficients the method of character-
istics gives an alternative method of attack which does not require real analyticity.
In this case we consider a pde of the form

n
∑

j=1

aj(x, u)∂ju = b(x, u) (1.10)

with data
u(x) = φ(x) , x ∈ S (1.11)

where S ⊂ R
n is a hypersurface, given in paramteric form as xj = gj(σ) , σ =

(σ1, . . . σn−1) ∈ R
n−1. (Think of S = {xn = 0} parametrized by g(σ1, . . . σn−1) =

(σ1, . . . σn−1, 0).)

4
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Theorem 1.3.4 Let S be a C1 hypersurface, and assume that the aj, b, φ are all
C1 functions. Assume the non-characteristic condition:

Σn
j=1aj(x0, φ(x0))nj(x0) 6= 0

holds at a point x0 ∈ S. Then there is an open set O containing x0 in which there
exists a unique C1 solution of (1.10) which also satisfies (1.11) at all x ∈ O ∩ S.
If the non-characteristic condition holds at all points of S, then there is a unique
solution of (1.10)-(1.11) in an open neighbourhood of S.

This is proved by considering the characteristic curves which are obtained by
integrating the system of n+1 characteristic ordinary differential equations (ode):

dxj

ds
= aj(x, z) ,

dz

ds
= b(x, z) (1.12)

with data xj(σ, 0) = gj(σ), z(σ, 0) = φ(g(σ)); let (X(σ, s), Z(σ, s)) ∈ R
n × R be

this solution. Now compute the Jacobian matrix of the mapping (σ, s) 7→ X(σ, s)
at the point (σ, 0): it is the n × n matrix whose columns are {∂σj

g}n−1

j=1 and the
vector a = (a1, . . . an), evaluated at x = g(σ), z = φ(g(σ)). The non-characteristic
condition implies that this matrix is invertible (a linear bijection) and hence, via
the inverse function theorem, that the “restricted flow map” which takes (σ, s) 7→
X(σ, s) = x is locally invertible, with inverse σj = Σj(x), s = S(x) and this
allows one to recover the solution as u(x) = Z(Σ(x), S(x)). This just means we
have found a locally unique characteristic curve passing through x, and have then
found u(x) by tracing its value back along the curve to a point g(Σ(x)) on the
initial hypersurface.

1.4 Various types of equations

We have defined elliptic operators on an open set Ω as partial differential operators
with the property that, for all x ∈ Ω, the princpal symbol σ(x, ξ) vanishes only
for ξ = 0 . Examples to keep in mind are the Laplacian and the Cauchy-Riemann
operator.

In addition to elliptic operators, later on we will consider parabolic operators
of the form

Lu = ∂tu + Pu

where

Pu = −
n

∑

j,k=1

ajk∂j∂ku +
n

∑

j=1

bj∂ju + cu (1.13)

is a second order elliptic operator - the quadratic form
∑n

j,k=1
ajkξjξk is positive

definite. A useful slightly stronger condition, which we will use , is that of uniform
ellipticity: there exist positive constants m,M such that

m‖ξ‖2 ≤
n

∑

j,k=1

ajkξjξk ≤ M‖ξ‖2 (1.14)

5
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holds everywhere. The standard example of a parabolic operator is provided by
the heat, or diffusion, equation ut−∆u = 0 , There are other, more general notions
of parabolicity in the literature.

A second order equation of the form

utt +
∑

j

αj∂t∂ju + Pu = 0

with P as in (1.13) (with coefficients potentially depending upon t and x), is called
strictly hyperbolic if the principal symbol

σ(τ, ξ; t, x) = −τ 2 − (α · ξ)τ +
∑

jk

ajkξjξk

considered as a polynomial in τ has two distinct real roots τ = τ±(ξ; t, x) for all
nonzero ξ. We will mostly study the wave equation

utt − ∆u = 0 , (1.15)

which is the basic hyperbolic operator. Again there are various alternative, more
general notions of hyperbolicity in the literature, in particular that of a strictly
hyperbolic system (see §11.1 in the book of Evans).

These three basic types of operators do not generally form a classification of
all possible operators: for example, the operator ∂2

1 + ∂2
2 − ∂2

3 − ∂2
4 is not elliptic,

parabolic or hyperbolic.
However, the case of second order equations in two space dimensions is special.

An equation of the form

auxx + 2buxy + cuyy = f , (1.16)

where a, b, c, f are real-valued smooth functions of x, y, u, ux, uy, is classified as:

• elliptic in Ω if b2 − ac < 0 throughout Ω ;

• hyperbolic in Ω if b2 − ac > 0 throughout Ω .

The intermediate case, b2 = ac is degenerate - it can lead to an equation which is
parabolic in the sense explained above, but there are other possibilities depending
upon lower order terms: for example the case of an ordinary differential equation
like uxx = 0 satisfies b2 = ac everywhere.

The real significance of the conditions b2 ≷ 0 is for the existence of the char-
acteristic curves for (1.16). These are defined to be real integral curves of the
differential equation

a(y′)2 − 2by′ + c = 0 .

In the elliptic case there are no real characteristic curves - this is the case for
the Laplacian. But for hyperbolic equations there are two distinct families of
real characteristic curves (corresponding to the two distinct roots of the quadratic
equation for y′). These curves determine a change of coordinates (x, y) 7→ (X,Y )
under which (1.16) can be transformed into the form

UXY = F (X,Y, U, UX , UY ) .

6
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Thus this is a canonical form for second order hyperbolic equations in the plane.
The wave equation uyy − uxx = 0 is a well-known example. The characteristic
curves are x+y = X and x−y = Y , and in the new coordinates X,Y the equation
takes the form UXY = 0. This gives the general solution as F (X) + G(Y ), or as
F (x + y) + G(x − y) in the original coordinate system, for arbitrary F,G.

1.5 Some worked problems

1. Consider the two-dimensional domain

G := {(x, y) | R2
1 < x2 + y2 < R2

2},

where 0 < R1 < R2 < ∞. Solve the Dirichlet boundary value problem for the Laplace
equation

∆u = 0 in G,

u = u1(ϕ), r = R1,

u = u2(ϕ), r = R2,

where (r, ϕ) are polar coordinates. Assume that u1, u2 are smooth 2π-periodic functions
on the real line.

Discuss the convergence properties of the series so obtained.

[Hint: Use separation of variables in polar coordinates (u = R(r)Φ(ϕ)), with perodic
boundary conditions for the function Φ of the angle variable. Use an ansatz of the form
R(r) = rα for the radial function.]

Answer As the hint suggests, we use radial coordinates and transform the Laplacian. Using
this, our PDE becomes

urr +
1

r
ur +

1

r2
uϕϕ = 0.

Using separation of variables as the hint suggests yields

R′′Φ +
1

r
R′Φ +

1

r2
RΦ′′ = 0

We multiply this equation by r2

RΦ and rearrange to obtain an equality between an expres-
sion which depends only on r and an expression which depends only on ϕ. This implies
that the two equations are equal to a constant (denoted λ2):

r2R′′(r) + rR′(r)

R(r)
=

−Φ′′(ϕ)

Φ
= λ2

We require a 2π periodicity for each value of the radial coordinate, so we require that Φ
be 2π periodic, and thus obtain:

Φ(ϕ) = A sin(λϕ) + B cos(λϕ),

with positve constants A, B. Since we assume the solution to be 2π-periodic it follows
that λ must be an integer, and w.l.o.g. λ is non-negative.

7
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For the other equation we use the Ansatz R(r) = rα and obtain

α(α − 1)rα + αrα − λ2rα = 0

and thus
α = ±λ.

Therefore

R(r) = Crλ + Dr−λ, if λ > 0

and by considering the case λ = 0 separately

R(r) = E + F ln(r), if λ = 0.

As the equation is linear, the most general solution is

u(r, ϕ) =
∞
∑

λ=1

(Aλrλ + Bλr−λ) sin(λϕ) + (Cλrλ + Dλr−λ) cos(λϕ)

+ E0 + F0 ln(r)

To account for the boundary conditions, we expand u1 and u2 as Fourier series:

u1(ϕ) =
a0

2
+

∞
∑

λ=1

aλ sin(λϕ) + bλ cos(λϕ),

u2(ϕ) =
c0

2
+

∞
∑

λ=1

cλ sin(λϕ) + dλ cos(λϕ).

(This is possible by the assumptions on u1,2.) To enforce

u(R1, ϕ) = u1(ϕ), u(R2, ϕ) = u2(ϕ)

comparison of the coefficients leads to

AλRλ
1 + BλR−λ

1 = aλ, AλRλ
2 + BλR−λ

2 = cλ,

CλRλ
1 + DλR−λ

1 = bλ, CλRλ
2 + DλR−λ

2 = dλ

and

E0 + F0 ln(R1) =
a0

2
,

E0 + F0 ln(R2) =
c0

2
.

The first two equations result in

Aλ =
Rλ

1aλ − Rλ
2 cλ

R2λ
1 − R2λ

2

, Bλ =
R−λ

1 aλ − R−λ
2 cλ

R−2λ
1 − R−2λ

2

,

and

Cλ =
Rλ

1 bλ − Rλ
2dλ

R2λ
1 − R2λ

2

, Dλ =
R−λ

1 bλ − R−λ
2 dλ

R−2λ
1 − R−2λ

2

.

8
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From the last equation we obtain

E0 =
a0 ln(R2) − c0 ln(R1)

2(ln(R2) − ln(R1))
, F0 =

c0 − a0

2(ln(R2) − ln(R1))
.

Since the u1,2 are smooth and periodic, their Fourier coeficients are rapidly decreasing,
i.e.

sup
λ∈N

λN (|aλ| + |bλ| + |cλ| + |dλ|) < ∞

for any positive N . Now let ρ = R1/R2 = (R2/R1)
−1 ∈ (0, 1), then the above formulae

can be written as

Aλ = R−λ
2

cλ − ρλaλ

1 − ρ2λ
, Bλ = Rλ

1

aλ − ρλcλ

1 − ρ2λ
,

and

Cλ = R−λ
2

dλ − ρλbλ

1 − ρ2λ
, Dλ = Rλ

1

bλ − ρλdλ

1 − ρ2λ
.

Since ρ ∈ (0, 1) it follows from these formulae that |Aλ| ≤ R−λ
2 (|aλ| + |cλ|)/(1 − ρ)

and |Bλ| ≤ Rλ
1 (|aλ| + |cλ|)/(1 − ρ) while |Cλ| ≤ R−λ

2 (|bλ| + |dλ|)/(1 − ρ) and |Dλ| ≤
Rλ

1 (|bλ| + |dλ|)/(1 − ρ) . As a consequence

sup
λ∈N

sup
R1≤r≤R2

λN (rλ|Aλ| + r−λ|Bλ| + rλ|Cλ| + r−λ|Dλ|) < ∞

for any positive N . Therefore the series

u(r, ϕ) =

∞
∑

λ=1

(Aλrλ + Bλr−λ) sin(λϕ) + (Cλrλ + Dλr−λ) cos(λϕ)

+ E0 + F0 ln(r)

converges absolutely and uniformly in the closed annulus G, to define a continuous function
u ∈ C(G), which agrees with the given data on the boundary ∂G . Furthermore u is smooth
in the open annulus G where it solves ∆u = 0 .

As a final comment on the method of solution, an alternative to separation of variables is
to say that any smooth function u(r, ϕ) which is 2π periodic in ϕ can be decomposed as

u(r, ϕ) = u0(r) +

∞
∑

λ=1

αλ(r) sin(λϕ) + βλ(r) cos(λϕ) ,

with αλ, βλ rapidly decreasing so that term by term differentiation is allowed. Then
substitute this into the equation to obtain equations for u0(r), αλ(r), βλ(r) and the same
answer will follow.

2. (i) State the local existence theorem for real-valued solutions of the first order quasi-linear
partial differential equation

n
∑

j=1

aj(x, u)
∂u

∂xj
= b(x, u) (1.17)

9
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with data specified on a hypersurface S, including a definition of “non-characteristic” in
your answer. Also define the characteristic curves for (1.17) and briefly explain their use
in obtaining the solution.

(ii) For the linear constant coefficient case (i.e. all the functions a1, . . . , an, are real
constants and b(x, u) = cu + d for some real numbers c, d) and with the hypersurface S
taken to be the hyperplane x·ν = 0 explain carefully the relevance of the non-characteristic
condition to obtaining a solution via the method of characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real valued function. Describe
the domain on which your solution is C1 and comment on this in relation to the theorem
stated in (i).

Answer (i)

Theorem 1.5.1 Let S be a C1 hypersurface, and assume that the aj , b, φ are all C1

functions. Assume the non-characteristic condition:

Σn
j=1aj(x0, φ(x0))nj(x0) 6= 0

holds at a point x0 ∈ S. Then there is an open set O containing x0 in which there exists
a unique C1 solution of (1.17) which also satisfies

u(x) = φ(x) , x ∈ S ∩ O . (1.18)

If the non-characteristic condition holds at all points of S, then there is a unique solution
of (1.17)-(1.11) in an open neighbourhood of S.

The characteristic curves are obtained as the x component of the integral curves of the
characteristic ode:

dxj

ds
= aj(x, z) ,

dz

ds
= b(x, z) (1.19)

with data xj(σ, 0) = gj(σ), z(σ, 0) = φ(g(σ)); let (X(σ, s), Z(σ, s)) ∈ R
n × R be this

solution. The characteristic curves starting at g(σ) are the curves s 7→ X(σ, s). They are
useful because the non-characteristic condition implies (via the inverse function theorem)
that the “restricted flow map” which takes (σ, s) 7→ X(σ, s) = x is locally invertible, with
inverse σj = Σj(x), s = S(x) and this allows one to obtain the solution by tracing along
the characteristic curve using the z component of the characteristic ode above. This gives
the final formula: u(x) = Z(Σ(x), S(x)).

(ii) In the linear constant coefficient case the non-characteristic condition reads a · ν 6= 0,
and the characteristic curves are lines with tangent vector a = (a1, . . . an), obtained by
integrating the characteristic ode:

dxj

ds
= aj ,

dz

ds
= b(x, z) = cz + d , (1.20)

and taking the “x component”. The flow map is the smooth function R×R
n → R

n given
by

Φ(s, x) = x + sa,

10
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i.e. the solution of the characteristic ode starting at x . Parametrize the initial hyperplane
as x =

∑n−1
j=1 σjγj , where the γj ∈ R

n are a linearly independent set of vectors in the
plane (i.e. satisfying γj · ν = 0). The restricted flow map is just the restriction of the flow
map to the initial hypersurface, i.e.

X(s, σ) =
n−1
∑

j=1

σjγj + sa = J











σ1

...
σn−1

s











.

Notice that here J , the Jacobian of the linear mapping (s, σ) 7→ X(s, σ), is precisely the
constant n × n matrix whose columns are {γ1, γ2, . . . γn−1, a}. But the non-characteristic
condition a·ν 6= 0 is equivalent to invertibility of this matrix and consequently X(s, σ1, . . . , σn−1) =
x is uniquely solvable for

s = S(x), σ1 = Σ1(x), . . . , σn−1 = Σn−1(x)

as functions of x (i.e. X is a linear bijection). This means that given any point x ∈ R
n

there is a unique characteristic passing through it which intersects the initial hyperplane
at exactly one point. This detemines the solution u uniquely at x since by the chain rule
z(s, σ1, . . . , σn−1) = u(X(s, σ1, . . . , σn−1)) satisfies

dz

ds
= cz + d,

so the evolution of u along the characteristic curves is known.

(iii) The characteristic ode are

dx

ds
= −z ,

dy

ds
= 1 ,

dz

ds
= 0 .

The initial hypersurface can be parametrized as (x(σ), y(σ) = (0, σ) and the solutions of
the characteristic ode with initial data z(0, σ) = −σ are x(s, σ) = −sσ, y(s, σ) = σ + s
and z(s, σ) = z(0, σ) = −σ . The restricted flow map is therefore X(s, σ) = (−sσ, s + σ).
Inverting this leads to a quadratic and the solution is given explicitly as:

u(x, y) = −1

2
y − 1

2

√

(y2 + 4x) y > 0,

u(x, y) = −1

2
y +

1

2

√

(y2 + 4x) y < 0,

where
√

a means positive square root of a. Both of these formulae define C1 (even smooth)
functions in the region {y2 + 4x > 0}, and can be verified to solve uy + uux = 0 there.
The region {y2 + 4x > 0} includes open neighbourhoods of every point on the initial
hypersurface x = 0 except for the point x = 0 = y: this fits in with the statement of
the theorem since it is at this point, and only this point, that the non-characterisitic
condition fails to hold. To solve the Cauchy problem it is necessary to match the initial
data: notice that the signs of the square roots in the solution given above are chosen to
ensure that the initial data are taken on correctly. It is necessary to choose one of the
“branches”, depending upon how the initial hypersurface {x = 0} is approached. This
means the solution is no longer globally smooth - it is discontinuous along the half line
{x > 0, y = 0}. As in complex analysis this line of discontinuity (like a “branch-cut”)
could be chosen differently, e.g. the half line {y = x, x > 0}.

11
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1.6 Example sheet 1

1. Write out the multinomial expansion for (x1 + . . . xn)N and the n-dimensional Taylor
expansion using multi-index notation.

2. Consider the problem of solving the heat equation ut = ∆u with data u(x, 0) = f(x).
Is the non-characteristic condition satisfied? How about for the wave equation utt = ∆u
with data u(x, 0) = f(x) and ut(x, 0) = g(x)? For which of these problems, and for which
data, does the Cauchy-Kovalevskaya theorem ensure the existence of a local solution? How
about the Cauchy problem for the Schrödinger equation?

3. (a) Find the characteristic vectors for the operator P = ∂1∂2 (n = 2). Is it elliptic? Do
the same for P =

∑m
j=1 ∂2

j − ∑n
j=m+1 ∂2

j (1 < m < n).

(b) Let ∆ =
∑n−1

j=1 ∂2
j be the laplacian. For which vectors a ∈ R

n−1 is the operator

P = ∂2
t u + ∂t

∑n−1
j=1 aj∂ju − ∆u hyperbolic?

4. Solve the linear PDE x1ux2
−x2ux1

= u with boundary condition u(x1, 0) = f(x1) for f a
C1 function. Where is your solution valid? Classify the f for which a global C1 solution
exists. (Global solution here means a solution which is C1 on all of R

2.)
5. Solve Cauchy problem for the semi-linear PDE ux1

+ ux2
= u4, u(x1, 0) = f(x1) for f a

C1 function. Where is your solution C1?
6. For the quasi-linear Cauchy problem ux2

= x1uux1
, u(x1, 0) = x1

(a) Verify that the Cauchy-Kovalevskaya theorem implies existence of an analytic solution
in a neighbourhood of all points of the initial hypersurface x2 = 0 in R

2,
(b) Solve the characteristic ODE and discuss invertibility of the restricted flow map X(s, t)
(this may not be possible explicitly),
(c) give the solution to the Cauchy problem (implicitly).

7. For the quasi-linear Cauchy problem Aux1
− (B − x1 − u)ux2

+ A = 0, u(x1, 0) = 0:
(a) Find all points on the intial hypersurface where the Cauchy-Kovalevskaya theorem can
be applied to obtain a local solution defined in a neighbourhood of the point.
(b) Solve the characteristic ODE and invert (where possible) the restricted flow map,
relating your answer to (a).
(c) Give the solution to the Cauchy problem, paying attention to any sign ambiguities
that arise.
(In this problem take A,B to be positive real numbers).

8. For the Cauchy problem

ux1
+ 4ux2

= αu u(x1, 0) = f(x1), (1.21)

with C1 initial data f , obtain the solution u(x1, x2) = eαx2/4f(x1 − x2/4) by the method
of characteristics. For fixed x2 write u(x2) for the function x1 7→ u(x1, x2) i.e. the solu-
tion restricted to “time” x2. Derive the following well-posedness properties for solutions
u(x1, x2) and v(x1, x2) corresponding to data u(x1, 0) and v(x1, 0) respectively:
(a) for α = 0 there is global well-posedness in the supremum (or L∞) norm uniformly in
time in the sense that if for fixed x2 the distance between u and v is taken to be

‖u(x2) − v(x2)‖L∞ ≡ sup
x1

|u(x1, x2) − v(x1, x2)|

then
‖u(x2) − v(x2)‖L∞ ≤ ‖u(0) − v(0)‖L∞ for all x2.

Is the inequality ever strict?
(b) for all α there is well-posedness in supremum norm on any finite time interval in the
sense that for any time interval |x2| ≤ T there exists a number c = c(T ) such that

‖u(x2) − v(x2)‖L∞ ≤ c(T )‖u(0) − v(0)‖L∞ .

12
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and find c(T ). Also, for different α, when can c be assumed independent of time for
positive (respectively negative) times x2?
(c) Try to do the same for the L2 norm, i.e. the norm defined by

‖u(x2) − v(x2)‖2
L2(dx1)

=

∫

|u(x1, x2) − v(x1, x2)|2dx1.

9. For which real numbers a can you solve the Cauchy problem

ux1
+ ux2

= 0 u(x1, ax1) = f(x1)

for any C1 function f . Explain both in terms of the non-characteristic condition and by
explicitly trying to invert the (restricted) flow map, interpreting your answer in relation
to the line x2 = ax1 on which the initial data are given.

10. (a). Consider the equation
ux1

+ nux2
= f (1.22)

where n is an integer and f is a smooth function which is 2π- periodic in both variables:

f(x1 + 2π, x2) = f(x1, x2 + 2π) = f(x1, x2).

Apply the method of characteristics to find out for which f there is a solution which is
also 2π- periodic in both variables:

u(x1 + 2π, x2) = u(x1, x2 + 2π) = u(x1, x2).

(b) Consider the problem in part (a) using fourier series representations of f and u (both
2π- periodic in both variables) and compare your results.
(c)* What can you say about the case when n is replaced by an irrational number ω? [Hint:
look in http : //en.wikipedia.org/wiki/Diophantine approximation for the definition
of Liouville number, and use this as a condition to impose on ω and investigate the
consequences for solving (1.22).]

11. Define, for non-negative s, the norm ‖ · ‖s on the space of smooth 2π-periodic function of
x by

‖f‖2
s ≡

∑

m∈Z

(1 + m2)s|f̂(m)|2

where f̂(n) are the fourier coefficients of f . (This is called the Sobolev Hs norm).
(i) What are these norms if s = 0? Write down a formula for these norms for s = 0, 1, 2 . . .
in terms of f(x) and its derivatives directly. (Hint Parseval).
(ii) If u(t, x) is the solution for the heat equation with 2π-periodic boundary conditions,
then for t > 1 and s = 0, 1, 2, , , find a number Cs > 0 such that

‖u(t, ·)‖s ≤ Cs‖u(0, ·)‖0 .

(iii) Show that there exists a number γ1 > 0 which does not depend on f so that
max |f(x)| ≤ γ1‖f‖1 for all smooth 2π-periodic f . For which s > 0 is it also true that
there exists γs > 0 such that max |f(x)| ≤ γs‖f‖s for all smooth 2π-periodic functions f ?
(iv) Generalize the inequality in the last sentence of (iii) to periodic functions f =
f(x1, . . . xn) of n variables. Find a number σ(n) such that the inequality holds if and
only if s > σ(n) ?
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