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Partial Differential Equations Example sheet 3

David Stuart
dmas2@cam.ac.uk

3 Elliptic equations

3.1 Introduction and Notation
The equation

−∆u + u = f (3.1)

can be solved foru via the Fourier transform, iff ∈ S(Rn). The solution is the inverse
Fourier transform of

ûf (ξ) =
f̂(ξ)

1 + ‖ξ‖2
; (3.2)

this formula defines a Schwartz function, and hence the solution u = uf ∈ S also, and
the mappingf 7→ uf is continuous in the sense that iffn is a sequence of Schwartz
functions such that‖fn − f‖α,β → 0 for every Schwartz semi-norm‖ · ‖α,β, then also
‖un − u‖α,β → 0 for every Schwartz semi-norm, whereun = ufn

, u = uf .
In fact the formula above extends to define a distributional solution uf for each

tempered distributionf ∈ S ′(Rn), i.e. for eachφ ∈ S(Rn) there holds

〈uf , −∆φ + φ 〉 = 〈 f , φ 〉 .

Using the Fourier transform definition of the Sobolev space one can check that:

‖uf‖
2
Hs+2 =

∫

Rn

(1 + ‖ξ‖2)s+2|û(ξ)|2 dξ =

∫

Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2 dξ = ‖f‖2
Hs .

Thus the solution operator

(−∆ + 1)−1 : Hs → Hs+2

f 7→ uf

is bounded, indicating that the solution gains two derivatives,as measured inL2, com-
pared to the inhomogeneous term. This phenomenon goes underthe nameelliptic regu-
larity, and generalizes to wide classes of elliptic equations, as does themaximum prin-
ciplebound

max
x∈Rn

|uf (x)| ≤ max
x∈Rn

|f(x)| , (3.3)
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which is valid for classical (e.g. Schwartz) solutions, andis an immediate consequence
of the calculus necessary conditions foru ∈ S(Rn) to attain a maximum/minimum at a
pointx∗:

∂ju(x∗) = 0 , ∂2u(x∗) ≥ 0 , (minimum);

∂ju(x∗) = 0 , ∂2u(x∗) ≤ 0 , (maximum).

The notation indicates definiteness of the symmetric matrices∂2u(x∗) = ∂2
jku(x∗) . This

definiteness implies that at a maximum∆u(x∗) = Tr ∂2u(x∗) ≤ 0 and hence by (3.1)
thatmax u = u(x∗) ≤ f(x∗) ≤ max |f |; a similar argument for the minimum completes
the derivation of (3.3) forS(Rn) solutions. It is clear from the proof just outlined that
this result is generalizable, both to more general classical solutions and also to larger
classes of equations.

It is the purpose of this chapter to explain the generalizations of the results just
discuused from (3.1) to much larger classes of second order elliptic equations.

Notation:Let BR = {w : |w| < R} andBR = {w : |w| ≤ R} be the open and
closed balls of radiusR and more generally letBR(x) = {w : |w − x| < R} and
BR(x) = {w : |w − x| ≤ R}. We write∂BR, ∂BR(x) for the corresponding spheres,
i.e. ∂BR(x) = {w : |w − x| = R} etc. In the followingΩ ⊂ R

n is always open
and bounded unless otherwise stated,Ω is its closure and∂Ω is its boundary (always
assumed smooth).

3.2 Existence of solutions
In this section it is explained how to formulate and solve elliptic boundary value prob-
lems via the Lax-Milgram lemma, starting with the case of periodic boundary condi-
tions.

Definition 3.2.1 A weak solution ofPu = f ∈ L2([−π, π]n), withP the operator given
by

Pu = −
∑

jk

∂j(ajk∂ku) + cu , (3.4)

with smooth periodic coefficentsajk = akj ∈ C∞([−π, π]n) andc ∈ C∞([−π, π]n), is
a functionu ∈ H1

per([−π, π]n) with the property that
∫

∑

jk

ajk ∂ju∂kv + cuv dx =

∫

fv dx (3.5)

for all v ∈ H1
per([−π, π]n).

Theorem 3.2.2 LetP be as in(3.4), and assume that the inequalities

m‖ξ‖2 ≤
n

∑

j,k=1

ajkξjξk ≤ M‖ξ‖2 (3.6)

and
c(x) ≥ c0 > 0 (3.7)

2
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hold everywhere, for some positive constantsm,M, c0 and all ξ ∈ R
n. Then givenf ∈

L2([−π, π]n) there exists a unique weak solution ofPu = f in the sense of definition
(3.2.1).

Proof Define the bilinear formB(u, v) =
∫

∑

jk ajk ∂ju∂kv + cuv dx and observe
that it obeys the continuity and coercivity conditions in the Lax-Milgram lemma in the
Hilbert spaceH1

per. In particular for continuity take‖B‖ = ‖a‖L∞ + ‖c‖L∞ , where the
norm for the matrixa(x) = (ajk(x))n

j,k=1 is the operator norm. For coercivity, notice
that (3.6) and (3.7) imply

B(u, u) ≥ min{m, c0} ‖u‖
2
H1 . (3.8)

The right hand side of (3.5) defines a bounded functionalL(v), since

|L(v)| = |

∫

fvdx| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 ,

by the Ḧolder inequality, and so existence and uniqueness follows from the Lax-Milgram
lemma. 2

Definition 3.2.1 and theorem 3.2.2 have various generalizations: to obtain the correct
definition of weak solution for a given elliptic boundary value problem the general idea
is to start with a classical solution and multiply by a test function and integrate by
parts using the boundary conditions in their classical format. This will lead to a weak
formulation of both the equation and the boundary conditions. For example the weak
formulation of the Dirichlet problem

Pu = f , u|∂Ω = 0 , (3.9)

where

Pu = −

n
∑

j,k=1

∂j(ajk∂ku) +
n

∑

j=1

bj∂ju + cu (3.10)

for continuous functionsajk = akj, bj andc, is to find a functionu ∈ H1
0 (Ω) such that

B(u, v) = L(v) , ∀v ∈ H1
0 (Ω) ,

whereL(v) =
∫

fv dx (a bounded linear map/functional), andB is the bilinear form:

B(u, v) =

∫

(

∑

jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)

dx .

By the Lax-Milgram lemma we have

Theorem 3.2.3 In the situation just described, assume that(3.6) and (3.7) hold. Then
if ‖b‖L∞ is sufficiently small, there exists a unique weak solution to(3.9).

Proof The crucial point is that (3.8) changes into

B(u, u) ≥ min{m, c0} ‖u‖
2
H1 − ‖b‖L∞‖u‖2

H1 , (3.11)

3
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where‖b‖L∞ = supx ‖b(x)‖ = supx(
∑n

j=1 bj(x)2)
1

2 . The remainder of the proof is
essentially as above. 2

This solution has various regularity properties, the simplest of which is that if in
addition ajk ∈ C1(Ω) then in any ball such thatBr(y) ⊂ Ω there holds for some
constantC > 0:

‖u‖H2(Br(y)) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (interiorH2 regularity),

and if in addition all the coefficients are smooth then we have, for arbitrarys ∈ N and
someCs > 0:

‖u‖Hs+2(Br(y)) ≤ Cs(‖f‖Hs(Ω) + ‖u‖L2(Ω)) , (higher interior regularity).

For the periodic case there is no boundary, and these resultshold with the ballsBr(y) re-
placed by the whole domain of periodicity[−π, π]n . For example, consider the Poisson
equation

−∆ u = f =
∑

m∈Zn

f̂(m) eim·x (3.12)

with periodic boundary conditions.

Theorem 3.2.4 (i) If u ∈ C2
per is a classical solution of(3.12)then necessarilŷf(0) =

0 .
(ii) If f ∈ L2 and f̂(0) = 0, then there is a unique weak solution of(3.12) in the

Hilbert space
H1

per,0 = {u ∈ H1
per : û(0) = 0}

given by

u(x) =
∑

m∈Zn\{0}

f̂(m)

‖m‖2
eim·x . (3.13)

Furthermore, this solution satisfies‖u‖Hs+2 ≤ 2‖f‖Hs wheneverf also belongs to
Hs

per .

Proof H1
per,0 ⊂ H1

per is a closed subspace, and is thus a Hilbert space using the same

inner product asH1
per . The fact that1

2
≤ ‖m‖2

1+‖m‖2 ≤ 1 for all m ∈ Z
n\{0} implies that

B(u, v) =

∫

∇u · ∇v dx = (2π)n
∑

m∈Zn\{0}

‖m‖2û(−m)v̂(m)

= (2π)n
∑

m∈Zn\{0}

‖m‖2û(m)v̂(m)

satisfies the continuity and coercivity conditions in the Lax-Milgram lemma, applied in
the Hilbert spaceH1

per,0. A weak solution in this space means a functionu ∈ H1
per,0 such

thatB(u, v) =
∫

fvdx for all v ∈ H1
per,0; existence of a unique weak solution in this

sense follows. It can be checked directly that this solutionis given by (3.13). Using the

4
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Fourier definition of theHs norm, the same inequality immediately gives the regularity
assertion:

‖u‖2
Hs+2 =

∑

m∈Zn\{0}

(1 + ‖m‖2)s+2|f(m)|2

‖m‖4
≤ 22‖f‖2

H2 ,

as claimed. 2

Remark 3.2.5 The significance of the condition̂f(0) = 0 for weak solutions is this: if
u ∈ C2

per is a weak solution of(3.12)and f̂(0) = 0 thenu is in fact a classical solution
(i.e. it satisfies(3.12)everywhere).

For the case of a domain with boundary, as in theorem 3.2.3, toget regularity right
up to the boundary it is necessary to assume that the boundaryitself is smooth: in this
case the interior regularity estimate for the weak solutionof (3.9) can be improved to

‖u‖H2(Ω) ≤ C ′(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (boundaryH2 regularity).

3.3 Stability in Sobolev spaces
Weak solutions to elliptic boundary value problems obtained via the Lax-Milgram lemma
inherit a stability (well-posedness) property in the spaceH1. For example in the periodic
case:

Theorem 3.3.1 Let ajk = akj ∈ C∞([−π, π]n) and c ∈ C∞([−π, π]n) be smooth
periodic coefficents for the elliptic operator

Pu = −
∑

jk

∂j(ajk∂ku) + cu

and assume(3.6)and (3.7)hold for some poitive constantsm,M, c0. AssumePu = f
with f ∈ L2([−π, π]n), then there exists a numberL such that then

‖u‖H1 ≤ L‖f(x)‖L2 .

If Puj = fj are two such solutions then

‖u1 − u2‖H1 ≤ L‖f1 − f2‖

(stability or well-posedness inH1).

Proof This can be proved directly by integration by parts. 2

Alternatively, this type of result is an immediate and general consequence of co-
ercivity and the Lax-Milgram formulation. Indeed, assume thatB(uj, v) = Lj(v) for
j = 1, 2 with the bilinear formB continuous and coercive as in the Lax-Milgram lemma
with coercivity constantγ, and withL1, L2 bounded linear functionals. Then subtracting
the two equations, and choosing as test functionv = u1 − u2, we deduce that

γ‖u1 − u2‖
2 ≤ B(u1 − u2, u1 − u2) = |(L1 − L2)(u1 − u2) | ≤ ‖L1 − L2‖‖u1 − u2‖ .

5
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Here the norm on linear functionalsL : X → R on a Hilbert spaceX is the dual norm

‖L‖ = sup
u∈X,u 6=0

‖Lju‖

‖u‖

This gives the general stability estimate

‖u1 − u2‖ ≤ γ−1 ‖L1 − L2‖ (3.14)

for Lax-Milgram problems.

3.4 The maximum principle
In the previous two sections we devloped techniques based onthe weak formulation,
which involves integration by parts (“energy” methods). For this reason it was conve-
nient to work with operators in the form (3.4), (3.10) in which the principal term is a
divergence. In the present section this is no longer particularly convenient, so the di-
vergence form for the pricipal term will be dropped, and variable coefficient operators
of the form (3.15) and (3.16) will be considered. Throughoutthis section the coeffi-
cientsajk(x) = akj(x) are continuous and will be again assumed to satisfy the uniform
ellipticity condition (3.6) for some positive constantsm,M and allξ ∈ R

n.
Recall thatΩ ⊂ R

n is always open and bounded unless otherwise stated,Ω is its
closure and∂Ω is its boundary (always assumed smooth). The proofs of the following
results are all similar to the proof of the first, which is given. In all proofs we use the
following fact from linear algebra. (Recall that a symmetric matrixA is non-negative if
ξT Aξ ≥ 0∀ ξ ∈ R

n .)

Lemma 3.4.1 If A,B are real symmetric non-negative matrices. ThenTr(AB) =
∑

jk AjkBjk ≥ 0 .

Theorem 3.4.2 (Weak maximum principle I) Letu ∈ C(Ω) ∩ C2(Ω) satisfyPu = 0
where

Pu = −
n

∑

j,k=1

ajk∂j∂ku +
n

∑

j=1

bj∂ju (3.15)

is an elliptic operator with continuous coefficients and(3.6)holds, then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x) .

Proof Let R > 0 be chosen such thatmR > ‖b‖L∞, and defineuǫ = u + ǫex1R for
ǫ > 0. ThenPuǫ = (−a11R

2 + b1R)ǫex1R < 0 sincea11 ≥ m everywhere inside
Ω by assumption. Now for contradiction assume there exists aninterior point x∗ at
which uǫ attains a maximum point. Then at this point∂ju

ǫ(x∗) = 0 and∂2
jku

ǫ(x∗) ≤ 0
( as a symmetric matrix) and hence lemma 3.4.1 implies thatPuǫ(x∗) ≥ 0, giving a
contradiction. It follows that there can never be an interior maximum, i.e.maxΩ uǫ =
max∂Ω uǫ . Since this holds for allǫ > 0 the result follows by taking the limitǫ ↓ 0 . 2

6
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Theorem 3.4.3 (Weak maximum principle II) Letu ∈ C(Ω)∩C2(Ω) satisfyPu = 0
where

Pu = −

n
∑

j,k=1

ajk∂j∂ku +
n

∑

j=1

bj∂ju + cu (3.16)

is an elliptic operator with continuous coefficients and(3.6) holds andc ≥ 0 every-
where, thenmaxx∈Ω u(x) ≤ maxx∈∂Ω u+(x) whereu+ = max{u, 0} is the positive part
of the functionu.

In these theorems the phraseweakmaximum principle is in contrast to thestrongmaxi-
mum principle (proved for harmonic functions in the next section) which asserts that if
a maximum is attained at an interior point the harmonic function is (locally) constant.

Corollary 3.4.4 In the situation of theorem 3.4.3maxx∈Ω |u(x)| = maxx∈∂Ω |u(x)|.

Theorem 3.4.5 (Maximum principle bound for inhomogeneous problems) Let u ∈
C(Ω) ∩ C2(Ω) satisfyPu = f with Dirichlet datau|∂Ω = 0, where

Pu = −
n

∑

j,k=1

ajk∂j∂ku +
n

∑

j=1

bj∂ju + cu (3.17)

is an elliptic operator with continuous coefficients and(3.6)holds and

c(x) ≥ c0 > 0

everywhere, for some constantc0 > 0, andf ∈ C(Ω), then

max
x∈Ω

u(x) ≤
1

c0

max
x∈Ω

|f(x)| .

If Puj = fj are two such solutions thenmax |u1 − u2| ≤ max |f1 − f2|/c0 (stability or
well-posedness in uniform norm).

3.5 Harmonic functions
Definition 3.5.1 A functionu ∈ C2(Ω) which satisfies∆u(x) = 0 (resp. ∆u(x) ≥ 0,
resp.∆u(x) ≤ 0) for all x ∈ Ω, for an open setΩ ⊂ R

n, is said to be harmonic (resp.
subharmonic, resp. superharmonic) inΩ.

Theorem 3.5.2 Let u be harmonic inΩ ⊂ R
n and assumeBR(x) ⊂ Ω. Then for

0 < r ≤ R:

u(x) =
1

|∂Br|

∫

∂Br(x)

u(y) dy , (mean value property). (3.18)

7
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Proof This is a consequence of the Green identity
∫

ρ<|w−x|<r

(v∆u−u∆v) dw =

∫

|w−x|=r

(v∂νu−u∂νv) dΣ−

∫

|w−x|=ρ

(v∂νu−u∂νv) dΣ ,

(where∂ν = n · ∇ just means the normal derivative on the boundary) with the choice of
v(w) = N(w − x), whereN is the fundamental solution for∆:

N(x) =
|x|2−n

(2 − n)ωn

, (n > 2)

=
1

2π
ln |x| , (n = 2) .

Hereωn =
∫

|x|=1
dΣ(x) = 2π

n

2 /Γ(n/2) is the area of the unit sphere inRn. Thus on
∂Br(x) we havev = r2−n/(2− n)ωn, n > 2 or v = (ln r)/(2π), n = 2 - in other words
v is constant on∂Br(x), which implies that

∫

|w−x|=r

v∂νu dΣ = v(r)

∫

|w−x|≤r

∆u dx = 0

by the divergence theorem, and the harmonicity ofu . Together with the corresponding
formula for the normal derivative,∂νv = r1−n/ωn on∂Br(x), this implies that

lim
ρ→0

∫

|w−x|=ρ

v∂νu dΣ = 0 , and lim
ρ→0

∫

|w−x|=ρ

u∂νv dΣ = u(x)

where we have used also the continuity ofu to take the latter limit:

∣

∣

∣
u(x) −

∫

|w−x|=r

u∂νv dΣ
∣

∣

∣
=

∣

∣

∣

1

ωnrn−1

∫

|w−x|=ρ

(

u(x) − u(w)
)

dΣ(w)
∣

∣

∣

≤ sup
|w−x|=ρ

|u(w) − u(x)| → 0

asρ → 0. Substituting these into the Green identity above in the limit ρ → 0 gives
(3.19).

Corollary 3.5.3 If u is a C2 harmonic function in an open setΩ thenu ∈ C∞(Ω). In
fact ifu is anyC2 function inΩ for which the mean value property(3.19)holds whenever
Br(x) ⊂ Ω thenu is a smooth harmonic function.

Corollary 3.5.4 (Strong maximum principle for harmonic fun ctions) Let Ω ⊂ R
n

be a connected open set andu ∈ C(Ω) harmonic inΩ with M = supx∈Ω u(x) < ∞.
Then eitheru(x) < M for all x ∈ Ω or u(x) = M for all x ∈ Ω. (In words, a
harmonic function cannot have an interior maximum unless itis constant on connected
components).

8
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Corollary 3.5.5 LetΩ ⊂ R
n be open with bounded closureΩ, and letuj ∈ C(Ω) , j =

1, 2 be two harmonic functions inΩ with boundary valuesuj|∂Ω = fj. Then

sup
x∈Ω

|u1(x) − u2(x)| ≤ sup
x∈∂Ω

|f1(x) − f2(x)| , (stability or well-posedness).

In particular if f1 = f2 thenu1 = u2.

Corollary 3.5.6 A harmonic functionu ∈ C2(Rn) which is bounded is constant.

Another consequence of the Green identity is the following.Let N(x, y) = N(|x −
y|) whereN is the fundamental solution defined above.

Theorem 3.5.7 Letu be harmonic inΩ with Ω bounded andu ∈ C1(Ω). Then

u(x) =

∫

∂Ω

[

u(y)∂νy
N(x, y) − N(x, y)∂νy

u(y)
]

dΣ(y) ,

where∂νy
= n · ∇y just means the normal derivative iny, while∂ν is the normal inx.

In fact the same formula holds withN(x, y) replaced by any functionG(x, y) such that
G(x, y) − N(x, y) is harmonic iny ∈ Ω andC1 for y ∈ Ω for eachx ∈ Ω.

It is known from above thatu is determined by its boundary values - to determine a
harmonic functionu from u|∂Ω is theDirichlet problem. (The corresponding problem
of determiningu from its normal derivative∂νu|∂Ω is called theNeumann problem. To
get a formula for (or understand) the solution of these problems it is sufficient to get a
formula for (or understand) the correponding Green function:

Definition 3.5.8 (i) A functionGD = GD(x, y) defined onGD : Ω×Ω−{x = y} → R

such that (a)GD(x, y)−N(|x− y|) is harmonic iny ∈ Ω and continuous fory ∈ Ω for
eachx, and (b)GD(x, y) = 0 for y ∈ ∂Ω, is a Dirichlet Green function.

(ii) A functionGN = GN(x, y) defined onGN : Ω × Ω − {x = y} → R such that
(a) GN(x, y) − N(|x − y|) is harmonic iny ∈ Ω and continuous fory ∈ Ω for eachx,
and (b)∂νy

GN(x, y) = 0 for y ∈ ∂Ω, is a Neumann Green function.

Given such functions we obtain representation formulas:

∆u = 0 , u|∂Ω = f =⇒ u(x) =

∫

∂Ω

f(y)∂νy
GD(x, y) dΣ(y) ,

and

∆u = 0 , ∂νu|∂Ω = g =⇒ u(x) = −

∫

∂Ω

g(y)GN(x, y) dΣ(y) ,

for f, g ∈ C(∂Ω).
The functionP (x, y) = ∂νy

GD(x, y), defined for(x, y) ∈ Ω × ∂Ω is called the
Poisson kernel, and is known explicitly for certain simple domains. For example, for
the unit ballΩ = B1, the Poisson kernel isP (x, y) = (1 − ‖x‖2)/ωn‖x − y‖n and the
solution of the Dirichlet problem on the unit ball is

u(x) =

∫

∂B1

f(y)
(1 − ‖x‖2)

ωn‖x − y‖n
dΣ(y) .

The formula for the half-spaceΩ = {(x, y) : x ∈ R
n, y > 0} can also be computed

explicitly (exercise).

9
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3.6 Worked problems
1. (i) Write down the fundamental solution of the operator−∆ on R

3 and state precisely what this
means.

(ii) State and prove the mean value property for harmonic functions onR
3.

(iii) Let u ∈ C2(R3) be a harmonic function which satisfiesu(p) ≥ 0 at every pointp in an open
setΩ ⊂ R

3. Show that ifB(z, r) ⊂ B(w,R) ⊂ Ω, then

u(w) ≥ (
r

R
)3u(z).

Assume thatB(x, 4r) ⊂ Ω. Deduce, by choosingR = 3r andw, z appropriately, that

inf
B(x,r)

u ≥ 3−3 sup
B(x,r)

u.

[In (iii) B(z, ρ) = {x ∈ R
3 : ‖x − z‖ < ρ} is the ball of radiusρ > 0 centered atz ∈ R

3.]

Answer(i) the distributionN ∈ S ′(R3) defined by the integrable function(4π|x|)−1 is the funda-
mental solution, and the precise meaning is that

−

∫

R
3
(4π|x|)−1∆φ(x)d3x = φ(0)

for every Schwarz functionφ ∈ S(R3).

(ii) Letu be harmonic inΩ ⊂ R
n and assumeBR(x) ⊂ Ω. Then for0 < r ≤ R:

u(x) =
1

|∂Br|

∫

∂Br(x)

u(y) dy , (mean value property). (3.19)

This is a consequence of the Green identity

∫

ρ<|w−x|<r

(v∆u − u∆v) dw =

∫

|w−x|=r

(v∂νu − u∂νv) dΣ −

∫

|w−x|=ρ

(v∂νu − u∂νv) dΣ ,

(where∂ν = n · ∇ just means the normal derivative on the boundary) with the choice ofv(w) =
N(w − x), whereN is as in (i). On∂Br(x) we havev = 1

4πr
- in particularv is constant on the

sphere∂Br(x), which implies that

∫

|w−x|=r

v∂νu dΣ = v(r)

∫

|w−x|≤r

∆u dx = 0

by the divergence theorem, and the harmonicity ofu . Together with the corresponding formula
for the normal derivative,∂νv = − 1

4πr2 on∂Br(x), we have:

lim
ρ→0

∫

|w−x|=ρ

v∂νu dΣ = 0 , and lim
ρ→0

∫

|w−x|=ρ

u∂νv dΣ = −u(x)

(having used also the continuity ofu to take the latter limit.) Substituting these into the Green
identity above in the limitρ → 0 gives (3.19).

10
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(iii) To start with integrate (3.19) with respect tor to obtain:

u(x) =
1

|Br|

∫

Br(x)

u(y) dy . (3.20)

For the first bit observe that non-negativity ofu implies that
∫

B(w,R)
u ≥

∫

B(z,r)
u and then apply

(3.20) to get:

|BR|u(w) =

∫

B(w,R)

u ≥

∫

B(z,r)

u = |Br|u(z) .

Dividing by 4πR3

3 = |BR| givesu(w) ≥ ( r
R

)3u(z). For the second part, consider any two points
w, z in the ballB(x, r). Then‖w − z‖ < 2r, and thereforeB(z, r) ⊂ B(w, 3r) ⊂ Ω by the
triangle inequality. It follows thatu(w) ≥ 3−3u(z) and sincew, z are arbitrary inB(x, r) that
infB(x,r) u ≥ 3−3 supB(x,r) u. (The result is called a Harnack inequality.)

2. In this questionΩ is a bounded open set inRn with smooth boundary, andν is the outward pointing
unit normal vector and∂ν = ν · ∇.

[a] (i) Let u ∈ C4(Ω)1 solve

∆2u = f in Ω ,

u = ∂νu = 0 on ∂ Ω ,

for some continuous functionf . Show that ifv ∈ C4(Ω) also satisfiesv = ∂νv = 0 on∂Ω then
∫

Ω

∆u ∆v dx =

∫

Ω

f v dx .

Use this to formulate a notion of weak solution to the above boundary value problem in the space
H2

∂(Ω) ⊂ H2(Ω) which is formed by taking the closure ofC∞
0 (Ω) in the Sobolev space:

H2(Ω) = {u ∈ L2(Ω) : ‖u‖2
H2 =

∑

α:|α|≤2

‖∂αu‖2
L2 < ∞} .

[a](ii) State the Lax-Milgram lemma. Use it to prove that there exists a unique functionu in the
spaceH2

∂(Ω) which is a weak solution of the boundary value problem above for f ∈ L2(Ω) .

[Hint: Use regularity of the solution of the Dirichlet problem for the Poisson equation.]

[b] Let Ω ⊂ R
n be a bounded domain with smooth boundary. Letu ∈ H1(Ω) and denote

ū =

∫

Ω

u dnx

/
∫

Ω

dnx .

The following Poincaŕe-type inequality is known to hold

‖u − ū‖L2 ≤ C‖∇u‖L2 ,

whereC only depends onΩ. Use the Lax-Milgram lemma and this Poincaré-type inequality to
prove that the Neumann problem

∆u = f in Ω , ∂νu = 0 on ∂ Ω ,

1This means all partial derivatives up to order 4 exist insidethe open setΩ, and they have continuous
extensions to the closureΩ .

11
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has a unique weak solution in the space

H1
−(Ω) = H1(Ω) ∩ {u : Ω → R ; ū = 0} ,

for arbitrary f ∈ L2 such thatf̄ = 0 . Show also that if this weak solution has regularityu ∈
C2(Ω) then it is a classical solution of the Neumann problem iff̄ = 0.

Show also that if there exists a classical solutionu ∈ C2(Ω) to this Neumann problem then
necessarilȳf = 0.

Answer[a](i) For u, v as described the Green identity gives:

∫

Ω

vf dx =

∫

Ω

v∆2u dx = −

∫

Ω

∇∆u · ∇v dx +

∫

∂Ω

v∇∆u · ν dS

=

∫

Ω

∆u · ∆v dx −

∫

∂Ω

∆u∇v · ν dS ,

which gives the result. Define the bilinear form

B : H2
∂(Ω) × H2

∂(Ω) → R

by B[u, v] :=
∫

Ω
∆u∆v dx. Then call a weak solution of the problem a functionu ∈ H2

∂(Ω) such
thatB[u, v] =

∫

Ω
vf dx for all functionsv ∈ H2

∂ .

[a](ii) We assume for this sectionH is a real Hilbert space with norm‖ · ‖ and inner product(·, ·).
We let〈·, ·〉 denote the pairing ofH with its dual space.
Lax-Milgram Lemma: Assume that

B : H × H → R

is a bilinear mapping, for which there exists constantsα, β > 0 such that

|B[u, v]| ≤ α‖u‖‖v‖ (u, v ∈ H)

and

β‖u‖2 ≤ B[u, u] (u ∈ H).

Finally, letf : H → R be a bounded linear functional onH. Then there exists a unique element
u ∈ H such that

B[u, v] = 〈f, v〉

for all v ∈ H.

To apply this lemma to [a](i) first notice that|B[u, v]| ≤ ‖u‖H2
∂
(Ω)‖v‖H2

∂
(Ω) trivially, so it is a

matter to check the second (coercivity) condition. Considering the hint, regularity of the Dirichlet
problem for the Poisson equation

∆u = f in Ω

u = 0 on ∂Ω

12
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with f ∈ L2(Ω) asserts that the unique weak solutionu ∈ H1
0 (Ω) is actually inL2 and verifies:

‖u‖2
H2(Ω) ≤ K‖f‖2

L2(Ω) = K‖∆u‖2
L2(Ω) .

Apply this to our problem: clearly anyu ∈ H2
∂ also lies inH1

0 , and so:

1

K
‖u‖2

H2
∂
(Ω) ≤ B[u, u].

Therefore by Lax-Milgram there exists a uniqueu ∈ H2
∂(Ω) such that

B[u, v] =

∫

Ω

fv dx (3.21)

for all v ∈ H2
∂(Ω) i.e. u is a weak solution.

[b] Define

B : H1
−(Ω) × H1

−(Ω) → R

by B[u, v] :=
∫

Ω
∇u∇v dx.

As in a) |B[u, v]| ≤ ‖u‖H1(Ω)‖v‖H1(Ω). Moreover, by the Poincare inequality with̄u = 0, we
have foru ∈ H1

−(Ω):

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) ≤ (C2 + 1)B[u, u].

Also, sincef̄ = 0:

∣

∣

∫

fudx
∣

∣ =
∣

∣

∫

f(u − ū)dx
∣

∣ ≤ C‖f‖L2‖∇u‖L2 .

Thus the functionalv 7→
∫

Ω
fv dx is bounded onH1

−(Ω) . Therefore by Lax-Milgram there exists
a uniqueu ∈ H1

−(Ω) such that

B[u, v] = −

∫

Ω

fv dx

for all v ∈ H1
−(Ω) i.e. u is a weak solution.

Now if u ∈ C2(Ω) thenf is also continuous; choosing as test functionφ − φ̄ for arbitraryφ ∈
C1(Ω), and integrating by parts, we obtain

∫

∂Ω

∂νu(φ − φ̄) dS −

∫

Ω

∆u (φ − φ̄) dx = −

∫

Ω

f (φ − φ̄) dx .

Now the divergence theorem gives
∫

∂Ω
∂νu dS =

∫

Ω
∆u dx , so that the terms with̄φ on the left

cancel, leaving:
∫

∂Ω

∂νu φ dS −

∫

Ω

∆u φ dx = −

∫

Ω

f (φ − φ̄) dx .

13
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If f̄ = 0 then
∫

Ω
f φ̄ dx = 0 and so we obtain

−

∫

Ω

∆u φ dx = −

∫

Ω

f φ dx , for all φ ∈ C1
0 (Ω)

which implies that∆u = f (under the assumption̄f = 0).

For the last part we assume we have a solution classical solution u of the Neumann problem. Then
we integrate the Poisson equation overΩ to obtain:

∫

Ω

f dx =

∫

Ω

∆u dx =

∫

∂Ω

∇u · ν dx = 0

by the divergence theorem. Thereforef̄ = 0.

14
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3.7 Example sheet 3
1. Recall that ifu ∈ C2(R3) and∆u ≥ 0 thenu is called subharmonic. State and prove a mean value

property for subharmonic functions. Also state the analogous result for superharmonic functions,
i.e. thoseC2 functions which satisfy∆u ≤ 0.

2. Let φ ∈ C(Rn) be absolutely integrable with
∫

φ(x)dx = 1. Assumef ∈ C(Rn) is bounded
with sup |f(x)| ≤ M < ∞. Defineφǫ(x) = ǫ−nφ(x/ǫ) and show

φǫ ∗ f(x) − f(x) =

∫

(

f(x − ǫw) − f(x)
)

φ(w)dw

(where the integrals are overR
n). Now deduce theapproximation lemma:

φǫ ∗ f(x) → f(x) asǫ → 0

and uniformly iff is uniformly continuous. (Hint: split up thew integral into an integral over the
ball BR = {w : |w| < R} and its complementBc

R for largeR).*Prove that iff ∈ Lp(Rn), 1 ≤
p < ∞ thenlimǫ→0 ‖φǫ ∗ f(x) − f(x)‖Lp = 0. (Hint: use the Minkowski inequality).

*By computing the Fourier transform of the functionγǫ,a(ξ) = exp[iξ · a − ǫ‖ξ‖2] deduce the
Fourier inversion theorem from the identity(û, γǫ,a)L2 = (u, γ̂ǫ,a)L2 .

3. Starting with the mean value property for harmonicu ∈ C2(R3) deduce that ifφ ∈ C∞
0 (R3)

has total integral
∫

φ(x)dx = 1 and is radialφ(x) = ψ(|x|) , ψ ∈ C∞
0 (R) thenu = φǫ ∗ u

whereφǫ(x) = ǫ−3φ(x/ǫ). Deduce that harmonic functionsu ∈ C2(R3) are in factC∞. Also
for u ∈ C2(Ω) harmonic in an open setΩ ∈ R

3 deduce thatu is smooth in the interior ofΩ
(interior regularity). *Prove that ifφ is a continuous function onRn which satisfies the mean
value property, then it is a smooth harmonic function.

4. If u1, u2 ∈ C2(Ω) ∩ C1(Ω) are harmonic inΩ and agree on the boundary∂Ω, show in two
different ways thatu1 = u2 thoroughoutΩ.

5. (i) Using the Green identities show that iff1, f2 both lie inS(Rn) then the corresponding Schwartzian
solutionsu1, u2 of the equation−∆u + u = f , i.e.

(−∆ + 1)u1 = f1 (−∆ + 1)u2 = f2

satisfy

(∗)

∫

|∇(u1 − u2)|
2 + |u1 − u2|

2 ≤ c

∫

|f1 − f2|
2

where the integrals are overR
n. (This is interpreted as implying the equation−∆u + u = f is

well-posed in theH1 norm (or “energy” norm) defined by the left hand side of (*).) Now try to
improve the result so that theH2 norm:

‖u‖2
H2 ≡

∑

|α|≤2

∫

|∂αu|2dx,

appears on the left. (The sum is over all multi-indices of order less than or equal to 2).

(ii) Prove a maximum principle bound foru in terms off and deduce thatsup
Rn |u1 − u2| ≤

sup
Rn |f1 − f2|.

(iii) Verify that for f ∈ S ′(Rn) the formula foruf in (3.2) remains valid, i.e. for eachφ ∈ S(Rn)
there holds

〈uf , −∆φ + φ 〉 = 〈 f , φ 〉 .
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6. Prove a maximum principle for solutions of−∆u + V (x)u = 0 (on a bounded domainΩ with
smooth boundary∂Ω) with V > 0: if u|∂Ω = 0 thenu ≤ 0 in Ω. (Assumeu ∈ C2(Ω) ∩ C(Ω).
Hint: exclude the possibility ofu having a strictly positive interior maximum).

What does the maximum principle reduce to for one dimensionalharmonic functions i.e.C2

functions such thatuxx = 0?

7. Write down the definition of a weakH1 solution for the equation−∆u+u+V (x)u = f ∈ L2(R3)
on the domainR3. Assuming thatV is real valued, continuous, bounded andV (x) ≥ 0 for all
x prove the existence and uniqueness of a weak solution. Formulate and prove well posedness
(stability) inH1 for this solution.

How about the case thatV is pure imaginary valued?

8. The Dirichlet problem in half-space:
LetH = {(x, y) : x ∈ R

n, y > 0} be the half-space inRn+1. Consider the problem∆xu+∂2
yu =

0, where∆x is the Laplacian in thex variables only) andu(x, 0) = f(x) with f a bounded and
uniformly continuous function onRn. Define

u(x, y) = Py ∗ f(x) =

∫

Rn

Py(x − z)f(z)dz

wherePy(x) = 2y

cn(|x|2+y2)
n+1

2

for x ∈ R
n andy > 0. Show that for an appropriate choice of

cn the functionu is harmonic onH and is equal tof for y = 0. This is thePoisson kernelfor
half-space.
(Hint: first differentiate carefully under the integral sign; then note thatPy(x) = y−nP1(

x
y
) where

P1(x) = 2

cn(1+|x|2)
n+1

2

, i.e. an approximation to the identity) and use the approximation lemma

to obtain the boundary data).

(ii) Assume thatn = 1 andf ∈ S(R). Take the Fourier transform in thex variables to prove the
same result.

9. Formulate and prove a maximum principle for a 2nd order elliptic equationPu = f in the case
of periodic boundary conditions. TakePu = −

∑n
jk=1 ajk∂2

jku +
∑n

j=1 bj∂ju + cu with ajk =

akj , bj , c andf all continuous and2π - periodic in each variable and assumeu is aC2 function
with same periodicity. Assume uniform ellipticity (3.6) and c(x) ≥ c0 > 0 for all x. Formulate
and prove well-posedness forPu = f in the uniform norm.

10. Formulate a notion of weakH1 solution for the Sturm-Liouville problemPu = f on the unit
interval[0, 1] with inhomogeneous Neumann data: assumePu = −(pu′)′+qu with p ∈ C1([0, 1])
andq ∈ C([0, 1]) and assume there exist constantsm, c0 such thatp ≥ m > 0 andq ≥ c0 > 0
everywhere, and consider boundary conditionsu′(0) = α andu′(1) = β. (Hint : start with a
classical solution, multiply by a test functionv ∈ C1([0, 1]) and integrate by parts). Prove the
existence and uniqueness of a weakH1 solution for givenf ∈ L2. (*) Show that a weak solution
u ∈ C2((0, 1)) whose first derivativeu′ extends continuously up to the boundary of the interval,
is in fact a classical solution which satisfiesu′(0) = α andu′(1) = β.
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