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3 Elliptic equations

3.1 Introduction and Notation

The equation
—Au+u=f (3.1)

can be solved fou via the Fourier transform, if € S(R™). The solution is the inverse
Fourier transform of .
f(§)

) = e

this formula defines a Schwartz function, and hence theisolut= «; € S also, and
the mappingf — uy is continuous in the sense thatfif is a sequence of Schwartz
functions such that f,, — f||l..s — 0 for every Schwartz semi-north - |, 5, then also
|un, — ullag — O for every Schwartz semi-norm, whetg = uy, , u = uy .

In fact the formula above extends to define a distributiomdliton «, for each
tempered distributiorf € S’(R"), i.e. for eachp € S(R™) there holds

(ugp, —Ap+0) = (f, ¢).

Using the Fourier transform definition of the Sobolev spate can check that:

(3.2)

2

s

s = [ QP aOF & = [ IR = 1

Thus the solution operator

(_A_i_l)fl . Hs N Hs+2
= uy

is bounded, indicating that the solution gains two derxestjas measured in’.?, com-

ared to the inhomogeneous term. This phenomenon goes tinedeameelliptic regu-
arity, anddgenerallzes to wide classes of elliptic equationspas themaximum prin-
ciple boun

max [us(z)] < max|f(z)[, (3.3)
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which is valid for classical (e.g. Schwartz) solutions, &@édn immediate consequence
of the calculus necessary conditions foe S(R™) to attain a maximum/minimum at a
point z,:

(minimum);
, (maximum).

The notation indicates definiteness of the symmetric metieu () = 0%,u(z.) . This

definiteness implies that at a maximuku(z,) = Tr 0*u(z,) < 0 and hence by (3.1)
thatmax u = u(x,) < f(z.) < max|f|; a similar argument for the minimum completes
the derivation of (3.3) foiS(R™) solutions. It is clear from the proof just outlined that
this result is generalizable, both to more general claks@iations and also to larger
classes of equations.

It is the purpose of this chapter to explain the generabregtiof the results just
discuused from (3.1) to much larger classes of second olig@icequations.

Notationiet By = {w : |w| < R} andBr = {w : |w| < R} be the open and
closed balls of radiugz and more generally leBg(z) = {w : |w — 2| < R} and

Br(z) = {w : |lw—z| < R}. We write 0Bg, 0Bgr(x) for the corresponding spheres,
i.e. OBg(r) = {w : |[w — x| = R} etc. In the following® C R" is always open
and bounded unless otherwise stat@ds its closure andX is its boundary (always
assumed smooth).

3.2 Existence of solutions

In this section it is explained how to formulate and solvé&tt boundary value prob-
lems via the Lax-Milgram lemma, starting with the case ofigdic boundary condi-
tions.

Definition 3.2.1 A weak solution ofu = f € L*([—m, 7|"), with P the operator given
by
Pu= — Z 0;(ajk0ku) + cu, (3.4)
ik
with smooth periodic coefficents, = ay; € C°([—, n|") andc € C®([—n, n1]"), iS
a functionu € H! ([, w|") with the property that

per
/ Z ajk Ojudiv + cuv dx = / fvdz (3.5)
jk

forall v € H),, ([—m, x]").

Theorem 3.2.2 Let P be as in(3.4), and assume that the inequalities

mllgl® < ) apéisn < M|E|P° (3.6)
g.k=1
and
c(x) > ¢ >0 (3.7)

2
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hold everywhere, for some positive constants\/, ¢, and all¢ € R"™. Then givenf €
L*([—m,7]") there exists a unique weak solution®f. = f in the sense of definition
(3.2.1)

Proof Define the bilinear formB(u,v) = [ >k @ik Ojudpv + cuv dr and observe
that it obeys the continuity and coercivity conditions ie ttax-Milgram lemma in the
Hilbert spacefi,,.. In particular for continuity takég B|| = ||a|z + ||c||z-, where the
norm for the matrixa(x) = (a;i(x))} ., is the operator norm. For coercivity, notice
that (3.6) and (3.7) imply

B(u,u) > min{m, co} ||ul3: . (3.8)

The right hand side of (3.5) defines a bounded functidrial), since

|1 L(v)| = I/fvdl’l < Az lvllze < A2 lloll

Iby the Hblder inequality, and so existence and uniqueness follows the Lax-Milgram
emma. O

Definition 3.2.1 and theorem 3.2.2 have various gener&bazst to obtain the correct
definition of weak solution for a given elliptic boundary ualproblem the general idea
is to start with a classical solution and m_ultif)ly by a teshdtion and integrate b
Parts using the boundary conditions in their classical &ttnThis will lead to a wea
ormulation of both the equation and the boundary cond#ioRor example the weak
formulation of the Dirichlet problem

Pu:f, U|8Q:0, (39)

where

n

Pu= — Y Oij(ajdsu) + > bjdju+ cu (3.10)

g k=1 j=1
for continuous functions,, = ax;, b; andc, is to find a function: € Hy () such that
B(u,v) = L(v), Yve Hy(Q),
whereL(v) = [ fvdz (a bounded linear map/functional), afds the bilinear form:
B(u,v) = / (Z ajk, Ojudyv + Z bj0juv + cuv) dx .

ik
By the Lax-Milgram lemma we have

Theorem 3.2.3In the situation just described, assume tf@&6) and (3.7) hold. Then
if ||b]| L is sufficiently small, there exists a unique weak solutiof318).

Proof The crucial point is that (3.8) changes into

B(u,u) > min{m, co} [lullf — [1bl]ze[JullZ (3.11)

3



Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.

where |[|b]|~ = sup, [|b(z)|| = sup, (> ), bj(:r)Q)% . The remainder of the proof is

essentially as above. a
This solution has various regularity properties, the sesplof which is that if in

additiona;, € C'(Q) then in any ball such thaB,(y) c Q there holds for some
constantC > 0:

lull g2, 0 < CUL 2@ + lullz@) (interior H? regularity),

and if in addition all the coefficients are smooth then we héwearbitrarys € N and
someC; > O:

aer2(B () < Cs([| f]

For the periodic case there is no boundary, and these rémlitsvith the ballsB,.(y) re-
placed by the whole domain of periodicityr, 7] . For example, consider the Poisson
equation

[|ul e + |ull @) ; (higher interior regularity)

—Au = f=>" f(m)e™* (3.12)

mezZ™

with periodic boundary conditions.

Theorem 3.2.4 (i) If u € C},, is a classical solution 0{3.12)then necessarily (0) =
0.

(i) If f € L2 and f(0) = 0, then there is a unique weak solution &12)in the
Hilbert space

H]:)LETO = {u €H per : '&(O) = O}
given by A
m .
u(x) = Z ﬁc( Hi e, (3.13)
meZn\{0}

Furthermore, this solution satisfigg|
HS

per *

as+z < 2||f|lzs wheneverf also belongs to

Proof H},., C H]}er is a closed subspace, and is thus a Hilbert space using thee sam
inner product asg{

.- The fact that, < Imll® < 1 for all m € Z™\{0} implies that

p 14+||m]?

B(u,v) = /Vu -Vuodr = (2m)" Z |26 (—m)d(m)
meZ\{0}

=@2m" Y llm]*a(m)o(m)

meZn\{0}

satisfies the continuity and coercivity conditions in theddMilgram lemma, applied in
the Hilbert spac »er0- A weak solution in this space means a functioa H,,, , such

per,
that B(u,v) = [ fvdz forallv € H,, ,; existence of a unique weak solution in this

sense follows. It can be checked dlrectly that this soluisagiven by (3.13). Using the
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Fourier definition of the/7* norm, the same inequality immediately gives the regularity
assertion:

Herr = < 2| fllze

[l

3 (L + [lm))* 2] f (m)]”

o) [}

as claimed. O

Remark 3.2.5 The significance of the conditiof(0) = 0 for weak solutions is this: if
u € C7,, is aweak solution of3.12)and f(0) = 0 thenu is in fact a classical solution
(i.e. it satisfieg3.12)everywhere).

For the case of a domain with boundary, as in theorem 3.2 §ettoegularity right

up to the boundary it is necessary to assume that the bourtdallyis smooth: in this
case the interior regularity estimate for the weak solutb(8.9) can be improved to

lull2@) < C'(If 2@ + llullr2@) . (boundaryH? regularity).

3.3 Stability in Sobolev spaces

Weak solutions to elliptic boundary value problems obtdivia the Lax-Milgram lemma

inherit a stability (well-posedness) property in the spHce For example in the periodic
case:

Theorem 3.3.1Leta;, = ay; € C®([—n,n|") andc € C*®([—m,7]") be smooth
periodic coefficents for the elliptic operator
Puy= — Z 0;(a;,0ku) + cu
ik

and assumé¢3.6) and (3.7) hold for some poitive constants, M, c,. AssumePu = f
with f € L*([—, 7|"), then there exists a numbérsuch that then

ull g < L|| f(2)]| 2

If Pu; = f; are two such solutions then

lur — ug|| g < Ll f1 — fo]

(stability or well-posedness if't).

Proof This can be proved directly by integration by parts. a
Alternatively, this type of result Is an immediate and gaeh@onsequence of co-

ercivity and the Lax-Milgram formulation. Indeed, assurhattB(u;,v) = L;(v) for

j = 1,2 with the bilinear formB continuous and coercive as in the Lax-Milgram lemma

with coercivity constany, and withZ,, L, bounded linear functionals. Then subtracting

the two equations, and choosing as test functienu; — u,, we deduce that

YJur — ug||* < Bluy — ug, ur — ug) = |(Ly — La)(u1r — ug) | < ||L1 — La|||Jus — us| -
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Here the norm on linear functionals: X — R on a Hilbert spac& is the dual norm

L;u
) = sup Lt
s ]

This gives the general stability estimate
luy = ual| < 47| Ly — Lol (3.14)

for Lax-Milgram problems.

3.4 The maximum principle

In the previous two sections we devloped techniques basdteoweak formulation,
which involves integration by parts f(“ener y” methods).r Bas reason it was conve-
nient to work with operators in the form (3.4), (3.10) in whithe principal term is a
divergence. In the present section this is no longer pdatityuconvenient, so the di-
vergence form for the pricipal term will be dropped, and &hte coefficient operators
of the form (3.15) and (3.16) will be considered. Throughtii$ section the coeffi-

cientsa,(z) = ay;(z) are continuous and will be again assumed to satisfy the umifo
ellipticity condition (3.6) for some positive constanis M and all§ € R™.

Recall that? C R” is always open and bounded unless otherwise sté&iad,its
closure andX) is its boundary (alwa?/s assumed smooth). The proofs of thaxfim
results are all similar to the proof of the first, which is giveln all proofs we use the
following fact from linear algebra. (Recall that a symmemmatrix A is non-negative if

(TAE >0V E €R™)

Lemma3.4.11f A, B are real symmetric non-negative matrices. THern(AB) =
ij AjkBjk 2 0.

Theorem 3.4.2 (Weak maximum principle 1) Letu € C(Q) N C%*(Q) satisfyPu = 0
where

Pu=— Y apd;idu+ Y bjou (3.15)
j=1

jk=1

is an elliptic operator with continuous coefficients &3d6) holds, then

rileaﬁx u(z) = iré%éu(x) :

Proof Let R > 0 be chosen such thatR > ||b]|.~, and defineut = u + ee™ ¥ for
¢ > 0. ThenPu® = (—a;  R?* + b R)ee™® < 0 sincea;; > m everywhere inside
2 by assumption. Now for contradiction assume there existgamior pointx, at
which v< attains a maximum point. Then at this pothu(z,) = 0 andd7.u(z,) < 0
( as a symmetric matrix) and hence lemma 3.4.1 implies th&{x,) > 0, giving a
contradiction. It follows that there can never be an intem@ximum, i.e.maxg u® =
maxgg ut . Since this holds for ak > 0 the result follows by taking the limi | 0. O
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Theorem 3.4.3 (Weak maximum principle 1) Letu € C(Q) N C?(Q) satisfyPu = 0
where . .
Pu= — Z ajkﬁjﬁku + Z bj('?ju + cu (316)
Gik=1 j=1
is an elliptic operator with continuous coefficients a(&16) holds andc > 0 every-

where, themnax, . u(z) < max,ego v’ (z) whereu™ = max{u, 0} is the positive part
of the functionu.

In these theorems the phraseakmaximum principle is in contrast to trstrongmaxi-
mum principle (proved for harmonic functions in the nextts®g which asserts that if
a maximum is attained at an interior point the harmonic fiamcis (locally) constant.

Corollary 3.4.4 In the situation of theorem 3.418ax . |u(z)| = max,epn |u(z)|.

Theorem 3.4.5 (Maximum principle bound for inhomogeneous poblems) Let u €
C(Q2) N C?(Q) satisfyPu = f with Dirichlet datau|sq = 0, where

n

Pu=— Y a;d;0ku+ Y bjdju+cu (3.17)

Jk=1 j=1
is an elliptic operator with continuous coefficients &(3d6) holds and
c(x) >co >0

everywhere, for some constapt> 0, and f € C(Q), then

1
maxu(z) < — max|f(z)|.
zeN Co zeQ

If Pu; = f; are two such solutions thanax |u; — us| < max |f; — f2|/co (Stability or
well-posedness in uniform norm).

3.5 Harmonic functions

Definition 3.5.1 A functionu € C?(2) which satisfie\u(x) = 0 (resp. Au(x) > 0,
resp. Au(x) < 0) for all z € Q, for an open sef2 C R™, is said to be harmonic (resp.
subharmonic, resp. superharmonic){in

Theorem 3.5.2 Let v be harmonic inQ} C R™ and assum&(z) C 2. Then for
O<r<R:

1

= — u(y) dy, (mean value property) (3.18)
|aBT| OBr(x)



Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.

Proof This is a consequence of the Green identity
/ (vVAu—ulAv) dw = / (v0,u—ud,v) dE—/ (vO,u—ud,v) d>,
p<|w—z|<r |lw—z|=r lw—z|=p

(whered, = n - V just means the normal derivative on the boundary) with tleashof
v(w) = N(w — z), whereN is the fundamental solution fak:

N@) = % (n>2)
= %lnm, (n=2).

Herew, = f|x|:1 d¥(r) = 272 /T(n/2) is the area of the unit sphere ¥. Thus on
OB, (x) we havev = r>7" /(2 — n)w,,n > 20rv = (Inr)/(27),n = 2 - in other words

v is constant 0@ B, (x), which implies that

/ vo,udy = v(r) / Audr =0
|lw—x|=r |lw—z|<r

by the divergence theorem, and the harmonicity, offogether with the corresponding
formula for the normal derivative),v = r'~" /w,, on 9B, (x), this implies that

lim vo,udy =0, and lim ud,vdyL = u(x)

p—0 p—0

lw—z|=p lw—z|=p

where we have used also the continuityudb take the latter limit:

’u(z) — /wx|:7' ud,v dZ‘ = /|wx:p (u(z) — u(w)) dZ(w)‘

< sup fu(w) —u(z)] =0

lw—z|=p

1

wnrnfl

?5, 5)9)—> 0. Substituting these into the Green identity above in thetlimi—~ 0 gives

Corollary 3.5.3 If w is a C* harmonic function in an open s€tthenu € C*°(Q). In
factif u is anyC? function in{2 for which the mean value propert$.19)holds whenever

B,(z) C Q2 thenu is a smooth harmonic function.

Corollary 3.5.4 (Strong maximum principle for harmonic functions) Let Q@ C R"
be a connected open set and= C'(£2) harmonic inQ with A/ = sup, g u(z) < oo.
Then eitheru(xz) < M for all z € Q or u(z) = M for all z € Q. (In words, a

harmonic function cannot have an interior maximum unlegsdébnstant on connected
components).
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Corollary 3.5.5 Let{2 C R" be open with bounded closufg and letu; € C(Q), j =
1, 2 be two harmonic functions ift with boundary values;|sn = f;. Then

sup |uy (z) — ug(z)| < sup |fi(z) — fo(x)], (stability or well-posedness).
e €0

In particular if f; = f; thenu; = us.
Corollary 3.5.6 A harmonic function: € C?(R") which is bounded is constant.

Another consequence of the Green identity is the followiret. N (z,y) = N(|x —
y|) whereN is the fundamental solution defined above.

Theorem 3.5.7 Letwu be harmonic ir®2 with Q bounded and. € C*(Q2). Then

u(r) = /8Q [U(y)c?uyN(:r, y) — N(fv,y)ayyU(y)] d(y)

whered,, = n - V, just means the normal derivative in while 9, is the normal inz.
In fact the same formula holds witki(x, y) replaced by any functio&'(x, y) such that
G(z,y) — N(x,y) is harmonic iny € Q andC* for y € Q for eachz € (.
It is known from above that, is determined by its boundary values - to determine a
harmonic functionu from u|sq is the Dirichlet problem (The corresponding problem
of determiningu from its normal derivativeé), u|sq, is called theNeumann problemTo

et a formula for (or understand) the solution of these mwoid it is sufficient to get a
ormula for (or understand) the correponding Green fumctio
Definition 3.5.8 (i) A functionGp = Gp(z,y) defined orGp : O x Q—{z =y} = R
such that ()G p(z,y) — N (| — y|) is harmonic iny € © and continuous foy € Q for
eachz, and (b)Gp(x,y) = 0 for y € 01, is a Dirichlet Green function.

(ii) A functionGy = Gx(z,y) defined oGy : Q x Q — {z = y} — R such that

(@) Gy (z,y) — N(|z — y|) is harmonic iny € © and continuous foy € Q for eachz,
and (b)0,,Gn(z,y) = 0 fory € 012, is a Neumann Green function.

Given such functions we obtain representation formulas:

Au=0, u‘aQ =f = U(x) = 0 f(y)&,yGD(x,y) dE(ZD )
and

Au=0, dulopn=9 = u(r)= — / 9(v)Gn(z,y) dX(y)

o0}
for f,g € C(092).

The functionP(x,y) = 0,,Gp(z,y), defined for(z,y) € Q x 00 is called the
Poisson kernel, and is known explicitly for certain simplanthins. For example, for
the unit ballQ = B, the Poisson kernel iB(z, ) = (1 — ||z||?)/wy ||z — y|| and the
solution of the Dirichlet problem on the unit ball is

u(e) = /a 1) Azl sy

The formula for the half-spac@ = {(z,y) : * € R",y > 0} can also be computed
explicitly (exercise).
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3.6 Worked problems

1. (i) Write down the fundamental solution of the operatah on R* and state precisely what this
means.

(i) State and prove the mean value property for harmonictions onR>.

(iii) Let u € C%(R®) be a harmonic function which satisfieép) > 0 at every poinp in an open
setQ ¢ R®. Show that ifB(z,r) C B(w, R) C Q, then

u(w) = (£)*u(2).

Assume thaB(x, 4r) C Q. Deduce, by choosing = 3r andw, z appropriately, that

inf >33 sup u.
B(x,r) B(z,r)

[In (iiiy B(z,p) = {z € R®: ||lz — z|| < p} is the ball of radiug > 0 centered at € R>.]

Answer(i) the distributionN € S’(R*) defined by the integrable functigrn|x|) " is the funda-
mental solution, and the precise meaning is that

— lx|) ! xX)d®z =
[ Ao’ = 60)

for every Schwarz functiop € S(R?).

(i) Letwu be harmonic i2 ¢ R™ and assumég(z) C Q. Then for) < r < R:

1

ule) = 10B;| Jag, ()

u(y) dy, (mean value property) (3.19)

This is a consequence of the Green identity

/ (vAu — uAv) dw = / (vOLu — udyv) dE — / (vOpu — udyv) dX
p<lw—z|<r lw—z|=r

|lw—z|=p

(whered, = n - V just means the normal derivative on the boundary) with theaghofv(w) =
N(w — z), whereN is as in (i). OndB, (z) we havev = ;L - in particularv is constant on the
sphered B,.(x), which implies that

/ vO,udY = v(r)/ Audzr =0
lw—z|=r |lw—z|<r

by the divergence theorem, and the harmonicity.ofTogether with the corresponding formula
for the normal derivative), v = — - ondB,(z), we have:

lim vo,ud® =0, and lim udyvdE = —u(x)
P=0Jjw—z|=p P=0 S jw—z|=p

(having used also the continuity afto take the latter limit.) Substituting these into the Green
identity above in the limip — 0 gives (3.19).

10
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(iii) To start with integrate (3.19) with respect tato obtain:

1
u(z) = Bl o u(y) dy . (3.20)

For the first bit observe that non-negativitywfmplies thath(w Ry > fB(z U and then apply

(3.20) to get:
|Brlu(w) = / u > / u = |Bylu(z).
B(w,R) B(z,r)

Dividing by @ = |Bg| givesu(w) > (%)u(z). For the second part, consider any two points
w, z in the ball B(z,r). Then|lw — z|| < 2r, and thereforeB(z,r) C B(w,3r) C Q by the
triangle inequality. It follows that(w) > 373u(z) and sincew, z are arbitrary inB(z, r) that
infp,)u > 373 supp(,,- - (The resultis called a Harnack inequality.)

2. Inthis question) is a bounded open setlRi* with smooth boundary, andis the outward pointing
unit normal vectorand, = v - V.

[a] (i) Letu € C*(Q)* solve
A%y =f in Q,
uw = 0,u=0on 00,

for some continuous functiofi. Show that ifv € C*(Q2) also satisfies = d,v = 0 0nd< then

/AuAvd:r:/ fudr.
Q Q

Use this to formulate a notion of weak solution to the abovendary value problem in the space
H3(Q) c H?(Q) which is formed by taking the closure 6§°(€2) in the Sobolev space:

HY Q) ={ue L(Q): Jullf = Y 110%ul7> < oo}

a:lal<2

[a](ii) State the Lax-Milgram lemma. Use it to prove thatrdexists a unique function in the
spaceH3(12) which is a weak solution of the boundary value problem above fe L?(€2).

[Hint: Use regularity of the solution of the Dirichlet prolstefor the Poisson equatidn.

[b] Let 2 C R" be a bounded domain with smooth boundary. &t H'(§2) and denote

ﬂ:/udnx//d”x.
Q Q

The following Poincag-type inequality is known to hold
u—alL> < Cl[Vul L2,

whereC only depends oif). Use the Lax-Milgram lemma and this Poinegype inequality to
prove that the Neumann problem

Au = f in Q, Oyu =0 on 08,

1This means all partial derivatives up to order 4 exist ingfieopen sef2, and they have continuous
extensions to the closufe.

11
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has a unique weak solution in the space
HY(Q) =H@QnNn{u:Q—=R;a = 0},

for arbitrary f € L? such thatf = 0. Show also that if this ‘weak solution has regularitye
C?(Q) then it is a classical solution of the Neumann problerfi i 0.

Show also that if there exists a classical solutiore C*(f2) to this Neumann problem then
necessarilyf = 0.

Answerfa](i) For u, v as described the Green identity gives:

/vfdw = /UAQHdZ‘:—/VAU~VUd.T+/ vVAu-vdS
Q Q Q Gle)

= [ Au-Avdx — AuVv-vdS,
Q Q

which gives the result. Define the bilinear form
B:H3(Q) x H3(Q) — R

by Blu,v] := [, AuAv dz. Then call a weak solution of the problem a functiog H3(Q2) such
that Blu,v] = |, vf dx for all functionsv € Hj .

[a](ii) We assume for this sectioH is a real Hilbert space with north- || and inner product, -).
We let(-, -) denote the pairing off with its dual space.
Lax-Milgram Lemma: Assume that
B:HxH-—R
is a bilinear mapping, for which there exists constants > 0 such that
|Blu, v]| < aflull[[v]| (u,v € H)
and

Bllull® < Blu,u] (u € H).

Finally, let f : H — R be a bounded linear functional dfi. Then there exists a unique element
u € H such that

Blu, v} = (f,v)

forallv e H.

To apply this lemma to [a](i) first notice thaB(u, v]| < |lullm2(q)l[vllaz@) trivially, soitis a
matter to check the second (coercivity) condition. Congndgethe hint, regularity of the Dirichlet
problem for the Poisson equation

Au= fin
u = 0 on 0f)

12
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with f € L?(Q) asserts that the unique weak solutiog H{ () is actually inL? and verifies:
Hu”%ﬂ(ﬂ) < KHfH%?(Q) = K||AU||2L2(Q) :
Apply this to our problem: clearly any € H3 also lies inH, and so:

1

EHUH%I(%(Q) < Blu,ul.

Therefore by Lax-Milgram there exists a uniques H3(2) such that
Blu,v] = / fvdx (3.21)
Q

forallv € H3() i.e. u is a weak solution.

[b] Define
B:H'(Q) x HL(Q) - R

by Blu,v] := [, VuVvdz.

As in @) |Blu,v]| < [Jullg(o)llvlla o). Moreover, by the Poincare inequality with= 0, we
have foru € H: (Q):

lull @) = llullZ2 (@) + IVullZa (@) < (C* + 1) Blu, u].

Also, sincef = 0:
[ fude| = | [ fu=w)da| < Clfllal Vo

Thus the functionab — [, fv dx is bounded orff! (Q2) . Therefore by Lax-Milgram there exists
a uniqueu € H! () such that

BMﬂ:iLﬂm

forallv € HL(Q) i.e. u is a weak solution.

Now if u € C?(Q) then f is also continuous; choosing as test functipr ¢ for arbitrary ¢ €
C1(Q2), and integrating by parts, we obtain

mﬁuu(qﬁ—@ds—/QAu(aﬁ—ab)dw:—/Qf(¢—<i>)dw-

Now the divergence theorem givg@gQ oyudS = fQ Au dz , o that the terms with on the left
cancel, leaving:

/ OupdS — Augdr = — f(p—o)dx.
a0 Q

Q
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If f =0then |, f¢dxz=0and sowe obtain

—/ Augdr = —/ fodr, forallg e CL(Q)
Q Q

which implies thatAw = f (under the assumptiofi = 0).

For the last part we assume we have a solution classical@olubf the Neumann problem. Then
we integrate the Poisson equation o¢&to obtain:

fdx = [ Audzx = Vu-vdr=0
Q Q o0

by the divergence theorem. Therefgfe= 0.

14



Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.

3.7 Example sheet 3

1. Recallthatifu € C?(R*) andAwu > 0 thenu is called subharmonic. State and prove a mean value
property for subharmonic functions. Also state the analsgesult for superharmonic functions,
i.e. thoseC? functions which satisfiAu < 0.

2. Letg € C(R") be absolutely integrable with ¢(x)dz = 1. Assumef € C(R") is bounded
with sup |f(z)| < M < co. Defineg.(z) = e "¢(x/e) and show

6o f(a) = fla) = [ (flo— ew) - f@))ow)du
(where the integrals are ov&™). Now deduce thapproximation lemma

¢e* f(z) = f(x) ase—0
and uniformly if f is uniformly continuous. (Hint: split up the integral into an integral over the
ball Br = {w : |w| < R} and its complemenB¢, for large R).*Prove that if f € LP(R"),1 <
p < oo thenlime_g ||¢e * f(z) — f(z)||z» = 0. (Hint: use the Minkowski inequality).

*By computing the Fourier transform of the function ,(¢) = exp[if - a — €||¢]|?] deduce the
Fourier inversion theorem from the identiy, ve,q)r2 = (4, Ye,a) 12-

3. Starting with the mean value property for harmonie= C?(R®) deduce that ifp € CgO(R?’)
has total integral[ ¢(z)dz = 1 and is radialp(z) = ¥ (|z|),¢ € C(R) thenu = ¢. * u
whereg. (z) = ¢ 3¢(x/¢). Deduce that harmonic functionsc C?(R”) are in factC>. Also
for u € C?(©2) harmonic in an open s& < R? deduce thai is smooth in the interior of2
(interior regularity). *Prove that ity is a continuous function o™ which satisfies the mean
value property, then it is a smooth harmonic function.

4. 1f up,uz € C%(Q) N CL(Q) are harmonic in? and agree on the boundadyf?, show in two
different ways that,; = u, thoroughout?.

5. (i) Using the Green identities show thafif, f both lie inS(R™) then the corresponding Schwartzian
solutionsuy, uo of the equation-Au + v = f, i.e.

(A +1Dur = fr (A +Dug = fo
satisfy

(+) /\vm )P fuy — waf? < 6/|f1 Y

where the integrals are ov&". (This is interpreted as implying the equatie\u + v = f is
well-posed in the/Zt norm (or “energy” norm) defined by the left hand side of (*).pWtry to
improve the result so that thg2 norm:

fulfye = Y [ 10°uPda,
la| <2
appears on the left. (The sum is over all multi-indices ofoldss than or equal to 2).

(i) Prove a maximum principle bound far in terms of f and deduce thatupgn |u1 — ug| <
supgn |f1 — fl.

(iii) Verify that for f € S’(R™) the formula foru in (3.2) remains valid, i.e. for eache S(R"™)
there holds

<uf7_A¢+¢> = <fv¢>

15
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6.

10.

Prove a maximum principle for solutions efAu + V(z)u = 0 (on a bounded domaif? with
smooth boundargQ) with V' > 0: if u|0Q = 0 thenu < 0in Q. (Assumeu € C%(Q) N C(9).
Hint: exclude the possibility of, having a strictly positive interior maximum).

What does the maximum principle reduce to for one dimensibaamonic functions i.e.C?
functions such that,, = 0?

Write down the definition of a weal{ * solution for the equatior Autu+V (z)u = f € L*(R?)

on the domairR®. Assuming tha/ is real valued, continuous, bounded ari¢z) > 0 for all

x prove the existence and uniqueness of a weak solution. Hatenand prove well posedness
(stability) in H'! for this solution.

How about the case th&t is pure imaginary valued?

The Dirichlet problem in half-space:

LetH = {(x,y) : x € R",y > 0} be the half-space iR" . Consider the problemxu+0§u =
0, whereA,, is the Laplacian in the: variables only) andi(x,0) = f(x) with f a bounded and
uniformly continuous function o®™. Define

u(z,y) = Py * f(x) = - Py(x —2)f(z)dz

wherePy(z) = ﬁ for z € R™ andy > 0. Show that for an appropriate choice of
cn(lz]?+y2) 2
¢, the functionu is harmonic onH and is equal tgf for y = 0. This is thePoisson kernefor

half-space.

(Hint: first differentiate carefully under the integral sighen note thab, (z) = y‘”P1(§) where

Pi(x) = # i.e. an approximation to the identity) and use the appraxiom lemma
cn(14|x 2

to obtain the boundary data).

(i) Assume that, = 1 and f € S(R). Take the Fourier transform in thevariables to prove the
same result.

Formulate and prove a maximum principle for a 2nd ordéptt! equationPu = f in the case
of periodic boundary conditions. Takeu = — =7 _; ajud%u + Y7, bj0ju + cu with a ), =
axj,bj,c and f all continuous an@r - periodic in each variable and assumés aC? function
with same periodicity. Assume uniform ellipticity (3.6)@&n(z) > ¢y > 0 for all z. Formulate
and prove well-posedness féw, = f in the uniform norm.

Formulate a notion of weak! solution for the Sturm-Liouville problen®u = f on the unit
interval [0, 1] with inhomogeneous Neumann data: asséme= —(pu’)’+qu with p € C1([0, 1])
andq € C([0,1]) and assume there exist constamtsc, such thapp > m > 0andg > ¢y > 0
everywhere, and consider boundary conditian®) = « and«/(1) = . (Hint : start with a
classical solution, multiply by a test functiane C*([0,1]) and integrate by parts). Prove the
existence and uniqueness of a we#k solution for givenf € L2. (*) Show that a weak solution

u € C%((0,1)) whose first derivative:.” extends continuously up to the boundary of the interval,
is in fact a classical solution which satisfig40) = « andu/(1) = S.
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