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4 Parabolic equations

In this section we consider parabolic operators of the form

Lu = 0u+ Pu
where . .
Pu= — > apdidpu+»_ bjdju+ cu (4.1)
G k=1 j=1

is an elliptic operator. Throughout this sectiop = ay;, b;, c are continuous functions,
and

mll¢]* < D apéiée < M) (4.2)
j,k=1
for some positive constants, M and allz,t and{. The basic example is the heat, or
diffusion, equationi; — Au = 0, which we start by solving, first fof in an interval
and then ink”. We then show that in both situations the solutions fit intcabstract
framework of what is called aemi-group of contraction operatordVe then discuss

some properties of solutions of general parabolic equat{omximum principles and
regularity theory).

4.1 The heat equation on an interval

Consider the one dimensional heat equatipr- u,, = 0 for z € [0, 1], with Dirich-
let boundary conditiong(0,¢) = 0 = u(1,¢). Introduce the Sturm-Liouville operator

Pf = —f", with these boundary conditions. Its eigenfunctigns= /2 sin mrz con-
stitute an orthonormal basis f@f ([0, 1]) (with inner product( f, g)> = [ f(z)g(z)dx,
considering here real valued functions). The eigenvaluagon isP¢,, = \,,¢,, With
A = (mm)?. In terms of P the equation is:

u+ Pu=0

and the solution with initial data

u(0,x) = ug(x) = Z(gzﬁm, 0) 12 Om
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is given by
U(QZ', t) = Z e_t)\m(qua UO>L2¢m . (43)

(In this expressior . means)_~_.) An appropriate Hilbert space is to solve for
2.2

u(-,t) € L*([0,1]) givenwu, € L2 but the presence of the facteri*» = e~
means the solution is far more regular tor 0 than fort = 0:

Theorem 4.1.1Letug = > (¢dm, uo)2¢m be the Fourier sine expansion of a function
ug € L?([0,1]). Then the seriegt.3) defines a smooth functiar(z, t) for ¢ > 0, which
satisfiesu; = u,, andlimy g [|u(z,t) — uo(x)|| 2 = 0.

Proof Term by term differentiation of the series with respect:to has the effect only

2.2

of multiplying by powers ofm. Fort > 0 the exponential factog=t*» = e-tm'"
thus ensures the convergence of these term by term diffatedtseries, absolutely and
uniformly in regionst > 6 > 0 for any positived . It follows that for positivet the series
defines a smooth function, which can be differentiated teyrtebm, and which can be
seen to solve,;, = u,, . To prove the final assertion in the theorem, choose for each
positivee, a natural numbeN = N(¢) such thad "3 | (¢, uo)7. < €2/42 . Letty > 0

be such that foft| < ¢,

N

1> (7 = 1) (6, u0) 20m 12 <

1

€

2

(This is possible because it is just a finite sum, each termhadlwhas limit zero). Then
the triangle inequality gives (far < ¢ < ty):

lu(e, £) = uo(@) 2 < | Y (€ = 1)(Sm, o) 12 duml 2
1

+2 x| Z(¢mvuO)L2¢m|‘L2 <e€

N+1

<

N

which implies thatim, | ||u(x,t) —uo(z)|| 2 = 0 sincee is arbitrary. (In the last bound,
the restriction ta positive is crucial because it ensures thiat™ < 1.) O

Theinstantaneous smoothirgffect established in this theorem is an important prop-
erty of |c|)arabollc pde. In the next section it will be shown tzuar for the heat equation
onR" also.

The formula (4.3) also holds, suitably modified, wheris replaced by any other
Sturm-Liouville operator with orthonormal basis of eigen€tions¢,,. For example,
for if Pu = —u” on[—m, 7]) with periodic boundary conditions: in this casg = m?
ande,, = ™ /\/2nform € Z.

4.2 The heat kernel

The heat equation is, = Au whereA is the Laplacian on the spatial domain. For the
case of spatial domair” the distribution defined by the function

L exp[— L2 if ¢ >0,
K(z,t) = { Vart" E

4.4
0 if t <0, (4-4)



Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.

is the fundamental solution for the heat equations{ispace dimensions). This can
be derived slightly indirectly: first using the Fourier tedarm (in the space variable
only) the following formula for the solution of the initiakue problem

u = Au, u(z,0) = ug(x), up € S(R™). (4.5)
Let K;(z) = K(z,t) and letx indicate convolution in the space variable only, then
u(z,t) = K % ug(x) (4.6)

defines fort > 0 a solution to the heat equation and by the approximation lartsae
question 2 sheet 3)m; ., u(z,t) = up(z). Once this formula has been derived for
up € S(R™) using the fourier transform it is straightforward to veridjrectly that it
defines a solution for a much larger class of initial data, e.g € LP(R"), and the

solution is in fact smooth for all positivie(instantaneous smoothihg _
The Duhamel principlagives the formula for the inhomogeneous equation

w=Au+ F, u(z,0) =0 4.7)
asu(z,t) = fot U(z,t,s)ds, whereU(z,t, s) is obtained by solving the family of ho-
mogeneous initial value problems:

U =AU, U(z,s,s)=F(x,s). (4.8)
This gives the formula (withF'(z,¢t) = 0 for ¢ < 0)

u(z,t) = /0 K, ¢« F(-,s)ds = /0 K, s(x —y)F(y,s)ds = K ® F(x,t),

for the solution of (4.7), where® means space-time convolution.

4.3 Parabolic equations and semigroups

In this section we show that the solution formulae just of#tdidefine semi-groups in
the sense of definition 6.1.1.

Theorem 4.3.1 (Semigoup property - Dirichlet boundary condions) The solution op-
erator for the heat equation given 1.3)

S(t) - ug — ul-,t)

defines a strongly continuous one parametemigroupof contractions on the Hilbert
spaceL?([0, 1]).

Proof S(t) is defined fort > 0 onu € L?([0, 1]) by
S(t) Z(¢ma u)L2 Cbm = Z e—tkm(quy U>L2 Qbm

m m

and sincele™™n| < 1 for ¢t > 0 and|jul?, = >, (¢m,u)2: < oo this mapsL?
into L? and verifies the first two conditions in definition 6.1.1. Thesg continuity
condition (item 4 in definition 6.1.1) was proved in theorerit.4. Finally, the fact
that the{S(¢)};>o are contractions of? is an immediate consequence of the fact that
le=tAm| < 1 fort > 0. O

To transfer this result to the heat kernel solution for wrspace given by (4.6), note
the following properties of the heat kernel:

3
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e Ki(z)>O0forallt> 0,z € R",
° fRn Ky(x)dx = 1forall t > 0,
e K;(x)is smooth fort > 0,z € R", and fort fixed K(-) € S(R"),

the following result concerning the solutiari-, t) = S(t)up = K; * u, follows from
basic properties of integration (see appendif2mn integration):

e for ug € LP(R™) the functionu(z,t) is smooth fort > 0,z € R™ and satisfies
uy — Au =0,

o |lu(-,t)|lee < |uollze @andlimy oy ||u(-,t) — ug||zr = 0for 1 < p < .

From these and the approximation lemma (question 2 sheet 8awread off the theo-
rem:

Theorem 4.3.2 (Semigroup property R™) (i) The formulau(-,t) = S(t)ug = K;*ug
defines fon,, € L' a smooth solution of the heat equation far 0 which takes on the
initial data in the sense thatm, o ||u(-,t) — ug||z: = 0.

(if) The family {S(t)}+>0 also defines a strongly continuous semigroup of contrac-
tions onLP(R™) for 1 < p < oc.

(iii) If in addition wu, is continuous them(z,t) — ug(x) ast — 0+ and the conver-
gence is uniform ifyy is uniformly continuous.

The properties of the heat kernel listed above also implyx@mmam principle for the
heat equation, which sa)&s that the solution always takegsah between the minimum
and maximum values taken on by the intial data:

Lemma 4.3.3 (Maximum principle - heat equation onR") Letu = u(x,t) be given
by (4.6). If a < ug < bthena < u(z,t) <bfort >0,z € R".

Related maximum principle bounds hold for general secodérgparabolic equations,
as will be shown in the next section.

4.4 The maximum principle

Maximum principles for parabolic equations are similar e elliptic case, once the
correct notion of boundary is understood.{1fC R" is an open bounded subset with

smooth boundary? and for7T" > 0 we defineQ2; = Q x (0,7] then the parabolic
boundary of the space-time domdis is (by definition)

OparSly = Qp — Qpr = QA x {t =0} UIN x [0,T].
We consider variable coefficient parabolic operators offte
Lu = 0yu + Pu
as in (4.1), still with the uniform ellipticity assumptiod.Q) onP .

Theorem 4.4.1Letu € C(Qy) have derivatives up to second orderirand first order
in ¢ which are continuous if27, and assuméu = 0. Then

4
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o if c =0 (everywhere) themax u(z,t) = max u(x,t), and

QT 8pm"QT
e if ¢ > 0 (everywhere) themax u(x,t) < max u*(z,t), and
m aparQT
max |u(z,t)| = nax |u(z,t)].

T par
whereut = max{u, 0} is the positive part of the functian

Proof We prove the first case (when = 0 everywhere). To prove the maximum
principle bound, consider(x,t) = wu(z,t) — et which verifies, fore > 0, the strict
inequality Lu® < 0. First prove the result fou<:

maxu‘(z,t) = max u(x,t

na: (2,1) = max u(z,1)
Sinced,..Qr C Qr the left side is automatically the right side. If the left side were

strictly greater there would be a poifit,, ¢.) with z, € Q and0 < ¢, < T at which the
maximum value is attained:

u(xy, te) = max u(z,t).
(I,t)EQT
By calculus first and second order conditiodsu = 0, u; > 0 and 8fju; < 0(as a
symmetric matrix - i.e. all eigenvalues ate0). These contradictu® < 0 at the point
(x4, t.). Therefore
max u(x,t) = max u(x,t).
QT 8pa,'rng

Now lete | 0 and the result follows. The proof of the second case is simila O

4.5 Regularity for parabolic equations

Consider the Cauchy problem for the parabolic equatian= 0,u + Pu = f, where

Pu= — Z 0;(ajx0ku) + Z b;0;u + cu (4.9)
j.k=1 j=1

with initial dataw,. For simplicity assume that the coefficients are all smootitfions

of z,t € Q.. The weak formulation of.v = f is obtained by multiplying by a test

functionv = v(z) and integrating by parts, leading to (whére) means the.? inner
product defined by integration overe ():

(ur, v)+ B(u,v) = (f,v), (4.10)
B(u,v) = / (Z aji, Ojudyv + Z bjOjuv + cuv) dz .
ik

To give a completely precise formulation it is necessary éting in which sense
the time derivativay; exists. To do this in a natural and general way requires ttre-in
duction of Sobolev spacd$® for negatives - see§5.9 and;7.1.147.1.2 in the book of
Evans. However stronger assumptions on the initial datar@mmogeneous term are
made a simpler statement is possible. (In the followingest&nt.(¢) means the almost
everywhere defined function oftaking values in a space of functions:aj

5
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Theorem 4.5.1For ug € H}(Q) and f € L*(Qr) there exists
u € L*([0, T]; H*(Q) N L=((0, T; Hy ()

with time derivativeu; € L?*(Q2r) which satisfie4.10)for all v € H} () and almost
everyt € [0, T] andlim,_o, ||u(t) — uo||z2 = 0. Furthermore it is unique and has the
parabolic regularityproperty:

T
() 20y 1wl L2() ) di+ess sup [[u() |30y < CUF Nl 2@ +lwol i) -
; A 1(©)
(4.11)

The time derivative is here to be understood in a weak/8istional sense as discussed
in the sections of Evans’ book just referenced, and the prbtbfe regularitg (4.11)isin
?7.1.3 of the same book. In the following result we will justifethat the bound holds
or smooth solutions of the inhomogeneous heat equationpamiadic interval:

Theorem 4.5.2 The Cauchy problem
Uy — Uz = [, u(x,0) = up(z)
wheref = f(z,t) is a smooth function which &r-periodic inz, and the initial value

ug Is also smooth andr-periodic, admits a smooth solution for> 0, 2r-periodic in
x, which verifies the parabolic regularity estimate:

/0 (s (6)122 + (&) ) dt < C (Jluoln + / / )P dadt) .

Here the norms inside the time integral are the Sobolev namisr-periodic functions
of z taken at fixed time.

Proof To prove existence, search for a solution in Fourier forms > a(m, t)e™*
and obtain the ODE

dyi(m, t) +m2a(m,t) = f(m,t), a(m,0) = do(m)

which has solution
t
a(m,t) = e " tag(m) —l—/ ™) f(m, s) ds .
0

Now by properties of Fourier seriegy(m) is a rapidly decreasing sequence, and the
same is true fof (m, t) locally uniformly in time, since

™

A 1 )
J < J )
Jax m?|f(m, )] < o B nax [0 f(z,t)] de

Now, estimatingi(m,t) for 0 < ¢ < T simply as

A < A P
[a(m, )] < lio(m)] +|T] max [f(m, ¢)],

6
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we see that(m, t) is a rapidly decreasing sequence singen) andf(m, t) are. Differ-
entiation in time just gives factors ef?, and sa” i (m, t) is also rapidly decreasing for

eachj € N. Thereforeu = ) u(m, t)e'™* defines a smooth function for positive time,
and it verifies the equation (by differentiation through suen, since this is allowed by
rapidly decreasing property just established.)

To obtain the estimate, we switch to energy methods: myltip¢ equation by,
and integrate. This leads to

T s s s T s
/ / up dodt + / ulde|,_, = / ul dx|,_, + / / fuy dadt .
0 - -7 —T 0 —T

Using the Hblder inequality on the final term, this gives an estimate

T T T
jﬁ HuAiﬂﬁadt+-wa!hdﬂH%15267(Hudﬁp-+J€ j/ F 1) dd )

0<t<T

(Here and below' > 0 is just a positive constant whose precise value is not inapoyt
To obtain the full parabolic regularity estimate from thtgs only necessary to use the
equation itself to estimate

T T T
| ol < o( [ lw@la+ [ i),

and combining this with the previous bound completes theEr_o _ O
The parabolic regularity estimate in this theorem can ely be derived from
the Fourier form of the solution (exercise).

5 Hyperbolic equations

A second order equation of the form
Uy + Z a;0,0;u + Pu =0
j

with P as in (4.1) (with coefficients potentially dependingpn t and x), is strictly hy-
perbolic if the principal symbol

U(Tv 57 i, ‘T) = _TQ - (O{ : g)T + Z ajkgjgk
ik

considered as a polynomialirhas two distinct real roots = 7. (§; ¢, «) for all nonzero
&. We will mostly study the wave equation

Ut — AU = 0, (512)

starting with some representations of the solution for theevequation. In this section
we writeu = u(t, z), rather tharu(z, t), for functions of space and time to fit in with
the most common convention for the wave equation.

7
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5.1 The one dimensional wave equation: general solution

Introducing characteristic coordinatés, = = + t, the wave equation takes the form
0%, x_u = 0, which has general classical solutiéi{X ) + G(X), for arbitrary C*

functionsF, G (by calculus). Therefore, the genetat solution ofu,, — u,, = 0is
u(t,z) = F(z —t)+ G(x + 1)

for arbitrary C? functionsF, GG. (This can be proved by changing to the characteristic
coordinatesY. = = & ¢, in terms of which the wave equationis=—% = 326“X

From this can be derlved the solution at time- 0 of the mhomogeneous initial
value problem:

Uy — Ugy = f (513)
with initial data
w(0,2) = ugle),  up(0,7) = wi(x (5.14)
1 1 x+ rx+t—s
u(t, ) = §(uo(:v—t)~|—uo(:v+t)) + 5/ y)dy + = / / (s,y)dyds.
x—t r—t+s (5 15)

Notice that there is again a “Duhamel principle” for the effef the inhomogeneous

term since
T+t—s t
/ / (s,y)dyds = / Ult,s,z)ds
r—1+s 0

whereU (t, s, z) is the solution of thdhomogeneouproblem with data/(s, s, z) = 0
ando,U (s, s,x) = f(s,z) specified at = s.

Theorem 5.1.1 Assuming thatug, u;) € C?*(R) x C*(R) and thatf € C*(R x R) the
formula(5.14)defines aC?%(R x R) solution of the wave equation, and furthermore for
each fixed time, the mapping

C"x Ot —C xC!
(uo(-), ur(-)) = (ult,-), w(t,-))
is continuous for each integer> 2. (Well-posedness ifi” x C"1.)
The final property stated in the theorem does not hold in nfaae dbne space dimension

(question 7). This is the reason Sobolev spaces are more@pgie for the higher
dimensional wave equation.

5.2 The one dimensional wave equation on an interval

Next consider the problem < [0,1] with Dirichlet boundary conditions:(¢,0) =
0 = u(t,1). Introduce the Sturm-Liouville operatd?f = —f”, with these boundary

conditions as if§4.1, its eigenfunctions being,, = v/2 sin mr2 with eigenvalues.,, =
(mm)2. In terms of P the wave equation is:

Utt+PU:O

8
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and the solution with initial data

u(0,z) = ug(x Zuo )P » w(0,2) = uy(x) = Z[L\l(m)gbm,
is given by

= > contty/Aim)on + g,

with an analogous formula far,. Recall the definition of the Hilbert spaé¢g! ((0,1)) as
the closure of the functions ifi5°((0, 1))* with respect to the norm given Hyf||%,, =

fo1 f?+ f”dx. In terms of the basis,, the definition is:

o0

Hy((0,1) = {f =) fudm : If N7 = D_ (L +m*7%)| fuul® < 00}
m=1
(In all these expressions, meansy.>°_,.) As equivalent norm we can ta€ \,,| f,.|>.

An appropriate Hilbert space for the wave equation with éhesundary conditions is to
solve for(u,u;) € X whereX = H; ¢ L?, and precisely we will take the following:

X = { f g me¢myzgm¢m . f g)”X - Z(/\m’fmF + |gm|2) < OO}

Now the effect of the evolution on the coefficiefitisn, t) andw;(m, t) is the map

am,t)\ [ cos(tv/An) snt2n) 1\ (Gi(m, 0)
(i) (—msmwm i) (m) 639

Theorem 5.2.1 The solution operator for the wave equation

L[ Wo u(t7 )
S(t) : (u1> — (ut(t, >)
defined by(5.16)defines a strongly continuogsoupof unitary operators on the Hilbert

spaceX, as in definition 6.3.1.

5.3 The wave equation om”

To solve the wave equation @¥ take the Fourier transform in the space variables to

show that the solution is given by

sin([|€]])
€1l

li.e. smooth functions which are zero outside of a closedusét C (0,1)

ult,z) = (2m) " / expi®® (cos(t]|€] )@ €) + @) (5.17)
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for initial valuesu(0,x) = wuo(z), u(0,2) = ui(z) in S(R™). The Kirchhoff formula
arises from some further manipulations with the fouriensfarm in the case = 3 and
ug = 0 and gives the following formula

u(t,z) = yyn uy(y) d¥(y) (5.18)

y:lly—=l|=t

for the solution at time¢ > 0 of u;; — Au = 0 with initial data(u,u;) = (0,u;). The

solution for the inhomogeneous initial value problem widngral Schwartz initial data
ug, u1 can then be derived from the Duhamel principle, which takesseame form as in
one space dimension (as explainednl).

5.4 The energy identity and finite propagation speed
Lemma 5.4.1 (Energy identity) If « is aC? solution of the wave equatidb.12) then

u? + |Vul?

o

) + 81(—ut31u) =0

whered; = 2.
From this and the divergence theorem some important priegdudllow:

Theorem 5.4.2 (Finite speed of propagation)f « € C? solves the wave equati¢b.12)
and if u(0,z) and u,(0, z) both vanish for|z — z¢|| < R, thenu(¢,z) vanishes for
|z — xo|| < R — [t] If |t| < R.

Proof Notice that the energy identity can be written diVe, p) = 0, where

2 \V4 2
(e,p) = (w —u i, - — wOpu) € R

Let¢, > 0 and consider the backwards light cone with vertexz,), i.e. the set
{(t,r) € R 1t < to, ||x — mo]| < to —t}.

The outwards normal to this dt,z) isv = \/%(1, Toa)) € R'*™, which satisfies
v-(e,p) > 0 by the Cauchy-Schwarz inequality. Integrating the energwiitly over the
region formed by intersecting the backwards light cone i slab{ (¢, z) € R'*3 :

0 <t <t},andusing the divergence theorem then leadi to, ., _, e(ti,z)dx <
f||x—zo||<to e(0, ) dz . This implies the result by choosing = ¢, . O
Theorem 5.4.3 (Regularity for the wave equation)For initial data «(0,z) = ug(z)

andu, (0, z) = uy(x) in S(R™), the formula(5.17)defines a smooth solution of the wave
equation(5.12) which satisfies the energy conservation law

1
5 / uy(t,z)? + || Vu(t,2)||* dv = E = constant .
Rn

10
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Furthermore, at each fixed tintghere holds:
[(u(t, ), wet, Das+isas < Cll(uo(-), ua(+))]

for eachs € Z. . Thus the wave equation is well-posed in the Sobolev néfnms x H*
and regularity is preserved when measured in the Sohblesense.

Hs+tlx Hs y C > 0 (519)

Proof The fact that (5.17) defines a smooth function is a consegueithe theorems
on the proEerties of the Fourier transform and on diffegmin through the integral
in §2, which is allowed by the assumption that the initial da& &chwartz functions.
Given this, it is straightforward to check that (5.17) de$irresolution to the wave equa-
tion. Energy conservation follows by integrating the idgnin lemma 5.4.1. Energy

conservation almost gives (5.19) fer= 0. It is only necessary to bourjf(z, -)||7-,
which may be done in the following way. To start, using enarggservation, we have:

d
%HUHH = [2(u,u)re | < lullzellwellze < V2E||ul e

This implies thatF,(¢) = (e + ||u(t, -)||%2)% satisfie$, for any positives
F.(t) < V2E

and hencdlu(t, )|z < F.(t) < (e + [[u(0,)||2.)2 + V2Et, for anye > 0. This
completes the derivation of (5.19) for= 0. The corresponding cases of (5.19) for
s = 1,2... are then derived by successively differentiating the eqonaand applying
the energy conservation law to the differentiated equation a

Remark 5.4.4 Well-posedness and preservation of regularity do not hotdte wave

equation when measured in uniform nor@isx C"~!, except in one space dimension,
see question 7.

Remark 5.4.5 For initial data (ug,u;) € H*™' x H* there is a distributional solution

(u(t,-),w(t,-)) € H' x H* at each time, which can be obtained by approximation
using density of’s° in the Sobolev spacd$® and the well-posedness estimgiel9)

6 One-parameter semigroups and groups

If Aisabounded linear operator on a Banach space its norm is

A :
|A] = sup M, (operator or uniform norm)
wexuo ]
This definition implies that ifA, B are bounded linear operators ohthen||AB| <
[ABI -

2Thee is introduced to avoid the possibility of dividing by zero.

11
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6.1 Definitions

Definition 6.1.1 A one-parameter family of bounded linear operat¢ft)},~o on a
Banach space&X forms a semigroup if

1. S(0) = I (the identity operator) , and

2. S(t+s) =S(t)S(s) forall t,s > 0 (semi-group property).

3. Itis called a uniformly continuous semigroup if in addlitito (1) and (2):
fl_lf(ﬂ |S(t) —1I]| =0, (uniform continuity).

4. ltis called a strongly continuous (@r,) semigroup if in addition to (1) and (2):
tlir& ISt)u —ul| =0,Vu e X (strong pointwise continuity).

5. If [|S(¢)|| < 1forall t > 0 the semigroug{S(¢)}:>o is called a semigroup of
contractions.

Notice that in 3 the symbdl- || means the operator norm, while in 4 the same symbol

means the norm on vectors Ki. Also observe that uniform continuity is a stronger
condition than strong continuity.

6.2 Semigroups and their generators

For ordinary differential equations= Ax, whereA is ann x n matrix, the solution can
be writtenz(t) = e!4z(0) and there is & — 1 corespondence between the mattiand

the semigroud (¢) = e onR™. In this subsectichwe discuss how this generalizes.

~ Uniformly continuous semigroups have a simple structuretvigeneralizes the fi-
nite dimensional case in an obvious way - they arise as sologperators for differential
equations in the Banach spa&e

d .
d—? +Au=0, for u(0) € X given. (6.20)

Theorem 6.2.1 {S(t) }+>0 is a uniformly continuous semgroup &hif and only if there
exists a unique bounded linear operatdr : X — X such thatS(t) = e 4 =
>~ o(—tA)’ /5!, This semigroup gives the solution®20)in the formu(t) = S(t)u(0),
which is continuously differentiable int§. The operatorA is called the infinitesimal
generator of the semigroufS () }+>o-

This applies to ordinary differential equations whens a matrix. It is not very useful
for partial differential equations because partial diigial operators are unbounded,
whereas in the foregoing theorem the infinitesimal generass necessarily bounded.
For example for the heat equation we need to tdke —A, the laplacian defined on
some appropriate Banach space of functions. Thus it is sapeso consider more
general semigroups, in particular the strongly continusemsigroups. An unbounded
linear operatorA is a linear map from a linear subspatg¢A) C X into X (or more
generally into another Banach space The subspac®(A) is called the domain ofl.
An unbounded linear operater: D(A) — Y is said to be

3This subsection is for background information only

12
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e densely defined D(A) = X, where the overline means closure in the norm of
X, and

e closedif the graphl’y = {(u, Au)|uepa)} C X x Y isclosed inX x Y.

A class of unbounded linear operators suitable for undedst@ strongly continuous
semigroups is the class nfaximal monotoneperators in a Hilbert space:

Definition 6.2.2 1. A linear operatorA : D(A) — X on a Hilbert spaceX is
monotone if{u, Au) > 0 forall u € D(A).

2. A monotone operatad : D(A) — X is maximal monotone if, in addition, the
range ofl + Ais all of X, i.e. if:

VieXJueDA) :(I+Au=f.

Maximal monotone operators are automatically densely défemd closed, and there is
the following generalization of theorem 6.2.1:

Theorem 6.2.3 (Hille-Yosida) If A : D(A) — X is maximal monotone then the equa-
tion
% +Au =0, for u(0) € D(A) C X given, (6.21)
admits a unique solution € C([0,00); D(A)) N C*(]0, o0); X) with the property that
lu(t)]] < |lw(0)| forall ¢ > 0 andu(0) € D(A). SinceD(A) C X is dense the
map D(A) > u(0) — u(t) € X extends to a linear mag,(t) : X — X and by
unigueness this determines a strongly continuous senpgrbcontractions S4(¢) }+>o
on the Hilbert spaceX. OftenS4(¢) is written asS4(t) = e~

Conversely, given a strongly continuous semigré6fx) }.>, of contractions on¥,
there exists a uniqgue maximal monotone operator D(A) — X such thatS,(t) =
S(t) for all t > 0. The operatorA is the infinitesimal generator dfS(¢)}:>o in the
sense thatl S(t)u = Aufor u € D(A) and¢ > 0 (interpreting the derivative as a right
derivative att = 0).

6.3 Unitary groups and their generators

Semigroups arise in equations which are not necessarily taversible. For equations
which are, e.g. the Schdinger and wave equations, each time evolution operataha

inverse and the semigroup is in fact a group. In this subsectVe give the definitions
and state the main result.

Definition 6.3.1 A one-parameter family of unitary operato{#/(¢)},.g on a Hilbert
spaceX forms a group of unitary operators if

1. U(0) = I (the identity operator) , and
2. U(t+s) =U(t)U(s) for all t, s € R (group property).

“4In this subsection you only need to know definition 6.3.1. Témainder is for background informa-
tion.

13



Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.

3. Itis called a strongly continuous (@r;) group of unitary operators if in addition
to (1) and (2):

11n(1) |U(t)u —ul| =0,Vu e X (strong pointwise continuity).

A maximal monotone operatot which is symmetric (=hermitian), i.e. such that
(Au,v) = (u, Av) forall u,vin D(A) C X (6.22)

generates a one-parameggoup of unitary operatord U (¢)},cr, often writtenU (¢) =
e~*4, by solving the equation

du

pri iAu =0, for u(0) € D(A) C X given. (6.23)

It is useful to introduce the adjoint operatds via the Riesz representation theorem:
first of all let

D(A*) ={u € X : the mapv — (u, Av) extends to a
bounded linear functionaX — c}

so thatD(A*) is a linear space, and far € D(A*) there exists a vectan, such that
(wy,v) = (u, Av) (by Riesz representation). The map— w, is linear onD(A*)

and so we can define an unbounded linear operator D(A*) — X by A*u = w,,

and since we started with a symmetric operator it is clear thgd) c D(A*) and
A*u = Au foru € D(A); the operatord* is thus an extension of.

Definition 6.3.2 If A: D(A) — X is an unbounded linear operator which is symmetric
and if D(A*) = D(A) thenA is said to be self-adjoint and we writé = A*.

Theorem 6.3.3 Maximal monotone symmetric operators are self-adjoint.

Theorem 6.3.4 (Stone theorem)f A is a self-adjoint operator the equatid6.23)has
a unique solution foru(0) € D(A) which may be writteni(t) = U,(t)u(0) with
lu(t)] = JJu(0| for all ¢t € R. It follows that theU,(¢) extend uniquely to define
unitary operatorsX — X and that{U4(¢) },cg constitutes a strongly continuous group
of unitary operators which are writtefi, (t) = =4,

Conversely, given a strongly continuous group of unitaryrages {U (t) },.r there
exists a self-adjoint operatot such thatl/ () = U (t) = e~ for all t € R.

6.4 Worked problems

1. LetC%, = {u € C*(R) : u(x + 2m) = u(x)} be the space of smoothr— periodic functions

per

of one variable.

(i) For f € Cpe, show that there exists a unique= uy € Cp¢, such that
0%u
T e

14
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(i) Show thatluy + ¢] > Iy[uy] for every¢ € Cpg,. which is not identically zero, where
I : C52. — Ris defined by

per

+ U
Ifju] = %[W ((%)2 +u? — 2f(z)u)dz.

(iif) Show that the equation
ou  0%u
9% 02 +u= f(z),
with initial dataw(0,z) = ug(z) € C,. has, fort > 0 a smooth solution(t,z) such that

per

u(t,-) € C, for each fixedt > 0, and give a representation of this solution as a Fourieeséni

per

x. Calculatdim;_. o, u(t, ) and comment on your answer in relation to (i).
(iv) Show thatl;[u(t, )] < Ifu(s,-)] fort > s > 0, and thatl ;[u(¢, -)] — If[us] ast — +oc.
Answer(i) Any solutionuy € C22, can be represented as a Fourier serigs= >_ iy (x)e’**, as

per
canf. Herea € Z. The fourier coefficients are rapidly decreasing i.e. fatan any polynomial
so it is permissible to differentiate through the sum, args§ituting into the equation we find that

the coefficientsi (a) are uniquely determined b according to(1 4 o2)i;(a) = f(a), hence

uf(:)?) = Z f(Oé) etax

1+ a2

(Can also prove uniqueness by noting that if there were tiuatisos u;, uy then the difference
u = u; — ug would solve—u,, + u = 0. Now multply by« and integrating by parts (using
periodicity) - this implies thay’ 2 + u? = 0 which implies thatu = u; — us = 0.)

(i) Calculate, using the equation satisfieddyand integration by parts, that

Ilus +0 = Ilusl = 5 [ (62 + 6o > 0

for non-zerogp € Cpy, .

(i) Expand the solution in terms of Fourier series and tkebstitute into the equation and use
integrating factor to obtain that the solutioni§, x) = >~ i(a, t)e'“® where

¢
(o, t) = e_t(1+”‘2)ﬁ()(a) —|—/ e_(t_s)(l+a2)f(a)ds.
0

Carry out the integral to deduce that

(o, t) = lf—i(—022 4 e*t(1+a2)(ﬂo(a) _ f(a) )

which implies thati(a, t) — 4s(a) = 1’1(”;?2 ast — oo, and further thatu(z,t) — us(x)
uniformly in z ast — +oo.
(iv) By (i) and (iii) we see thau(z,t) = us(x) + ¢(z,t) whereg(a,t) = et (o () —
Gy (a)). Now apply (ii) and use the Parseval theorem to deduce that
Iplu(t, )] = Ig[ug] = 7 > (1 + 0®)|d(a, 1)
=7 > (14 a2)e 2 g () — ()

which decreases to zero singg(a) andd s («) are rapidly decreasing.
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2. Forthe equatiom; — u,, +u = f, wheref = f(z,t) is a smooth function which igr-periodic

in z, and the initial data(, 0) = uo(z) are also smooth aritir-periodic obtain the solution as a
Fourier series. = >_ a(m, t)e!™* and hence verify the parabolic regularity estimate:

T T T
A wmmmrwwm@nmscwwﬁp+A [ﬂumwﬁmay

Answer:Use the Fourier form of the solution(z,t) = 3", ;. 4(m,t)e"™ at each time, and
similarly for f, and the definition

Hp,={u= Y a(m)e™” e L?: |lulz. = Y (L+ |ml*)*|a(m)]® < oo},

mezn mezn

is for the Sobolev spaces of fixed time functidsperiodic in each co-ordinate; and fors =
0,1,2,.... Writing w,, = 1 + ||m/||?, and using an integrating factor the solution is given by:
t ~
a(m,t) = e"“mta(m,0) +/ e~ (=9 f(m 5)ds
0

in Fourier representation. The second term is a convolusomy the Hausdorff-Young inequality
1f = gllZz < I£1I7: llgll7= we obtain:

T t R T
/ | / e~ (t=8)wm f(m,s)ds |2 dt < (/ |€—twm
0 0 0

1 T

dt)? /OT |f(m, t)|2dt

|f(m,t)|2dt .

— 2
W Jo

1—e—wmT

Here we have made use ﬁf e wntdt =
2(a? + b%), we obtain:

< Z-. Using this bound, anfh + b|* <

Wm,

T T T
| whlitmopar< e[ [ et im0 + [ 1fm.Pa]
0 0 0
w T
<2 T lam 0P + [ Ifm.)Pat].
2 0

Now sum overn € Z™ and use the Parseval theorem and definitions-dfy- to obtain
T

[ 1ol < cons. [l + [ 1]

To obtain the inequality as stated it is sufficient to use tgagion to obtain the same bound for
fOT [lu(t)||32 dt (with another constant).

. (i) Define the Fourier transfornfi = F(f) of a Schwartz functiory € S(R"), and also of a

tempered distributiom € S'(R").
(i) From your definition compute the Fourier transform oéttlistributioniV, € S’(R*) given by

1
Wi (1) =< W, - .
H(Y) =< Wy, > . HyH:tw(y) (y)
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for every Schwartz) € S(R?). (HeredX(y) = t2dQ(y) is the integration element on the sphere
of radiust,) and hence deduce a formula (Kirchoff) for the solutionta tnitial value problem
for the wave equation in three space dimensions,

0%y

w_AUZO,

with initial datau(0,z) = 0 and2%(0,z) = g(z), z € R® whereg € S(R?). Explain briefly why
the formula is valid for arbitrary smootf.

(iii) Show that anyC? solution of the initial value problem in (i) is given by thermula derived
in (i) (uniqueness).

(iv) Show that any two solutions of the initial value probléon

%u  Ou
U Ay =
oz T Au=0

with identical initial data as in (ii), also agree for ahy- 0.

Answer(i) f(&) = [ f(z)e ™€ dx, and(d, f) = (u, f) . This defines: € S'(R™) since for any
f € S(R™) the Fourier transfornf € S(R™) also; in factf — f is a linear homeomorphism on
S(R").

(ii) Compute

. 1 A t i
, _ ax _ —it|[&]| cos O dQd
<Wi f>=— ||yH:tf(y) W)=, /n f€) /IQI—le £

Here we are writind) = (6, ¢) for the spherical polar angles fgr with the direction of taken
as the ¢3 axis”, so thaty - £ = ||£]|||y|| cos @ = t]|£]| cos 6. The inner integral can be performed,
after insertingd) = sin 6dfd¢, and equal@x x (2sint|/£]])/(¢||€]]) , so that overall:

sin ¢|€]]
w gl

<Wt,f>:<Wt7f>:/ f(€)de.

This meand/, is the distribution determined by the functi ) ﬁ?:f”) . (This function is actually
smooth and bounded by the Taylor expansion, and so detesraitempered distribution.)

But in Fourier variables the solution of the wave equation is

sin(tllel) —
o)

for initial valuesu(0, z) = ug(z), u(0,2) = uy(x) in S(R™). Comparing with the formula just
derived, and applying the convolution theorem, it followattthe solution withug = 0 andu; = ¢
is given at each timeby u(t,-) = W, x g, since then

(t,§) = (cos(tll¢)@(€) +

sin(t[[])

it €) = W(©)ale) =

9(¢)

(i) Classical solutions of the wave equation obey the gp@nomentum conservation law

6t+V-p:0

17
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wheree = (u? + |Vul?)/2 andp = —w,Vu. Integratee, + V - p = 0 over the part of the
backward light cone with vertef¢, ), for somet, > 0, which lies in the slab betweet = 0}
and{t = t; < to}; i.e. the region

Kigwy = {(t,x) €R™3 .0 <t <ty ||z — x| <to—t}.

Applying the divergence theorem, and noticing that ifs the outward pointing normal on the
sloping part of the boundary of this region, then(e, p) > 0 by the Cauchy-Schwarz inequality,
we deduce that

e(tr,z)dx < / e(0,x) dz. (6.24)

lz—zol|<to—t1 le—zoll<to

This implies that if the initial data are zero then the salntis zero at all later times. By time
reversal symmetry an identical argument implies the sanmg tfor negative times. Applied to
the difference of two solutions this implies uniquenesadgiby linearity the difference of two
solutions of the wave equation also solves the wave eq)atim hence that any classica?
solution is given by the same formula as was derived in (ii).

(iv) Do essentially the same calculation as in (iii) but @sthis time that
et +V-p=—ui<0
which gives the same conclusion 6.24 for positive timesweler, since time reversal symmetry

no longer holds, the argument cannot now be simply reversethtain the analogous inequality
for negative times).

. Consider @ontinuoudunctiont — u(t) € C such thatu(t)| = 1Vt andu(t + s) = u(t)u(s) for

all real s, ¢t . Prove that there exisis € R such thatu(t) = e**. Deduce Stone’s theorem on the

Hilbert spaceC .

AnswerThere exists\(t), defined mo®r, such thatu(t) = ¢*®). By continuity there exists
§ > 0 such that foftt| € I = (—d,+4) we havelu(t) — 1| < 3. Inthis intervall, there is a unique
A(t) € (—m, +7) which is continuous and satisfie$t) = () and\(t + s) = A(t) + A(s) for
s,t,s+tallin I. Let N be any integer sufficiently large thgt € 7, and defines = NA(3;). Then
the semigroup property implies thaf2) = (u(4))™ = e™\~) = ¢/, for any integem.
The value ofa thus defined is independent &f chosen as above: indeedgif, N/ were another
such value we would also hauét) = ' % for all integralm. Clearly L. € I, so also defining

NN’

b = NN'A(w+-) We have by the additivity of thata = b = o’. Thereforea is unique, for all

such integersV with & € I and sou(t) = e~ for all suchN and allm € Z. It follows from
the density ofz in R and the continuity ofu(¢) thatu(t) = e*** forall t € R.
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6.5 Example sheet 4

1. (a) Use the change of variableg, =) = c'u(t, z) to obtain an %-space” formula for the solution
to the initial value problem:

u+u=Au  u(0, ) =u(-) € S(R").
Hence show thau(t, z)| < sup,, |uo(z)| and use this to deduce well-posedness in the supremum
norm (fort > 0 and allz).
If a < wup(x) < bforall x what can you say about the possible values(@fx) for ¢t > 0.
(b) Use the Fourier transform into obtain a (Fourier space) formula for the solution of:

ug — 2ug +u = Au u(0, -) = up(-) € S(R™), w(0,-) =u1(-) € S(R™).

2. Showthatifu € C(]0,00) x R")NC?((0, 00) x R™) satisfies (i) the heat equation, @ij0, z) = 0
and (iii) |u(t,z)| < M and|Vu(t,z)| < N for somelM, N thenu = 0. (Hint: multiply heat
equation byK;, —+(z — xo) and integrate ovelrr| < R,a < t < b. Apply the divergence theorem,
carefully letR — oo and therb — ¢y anda — 0 to deduceu(ty, zg) = 0.)

3. Show that ifS(¢) is a strongly continuous semigroup of contractions on a BarsmaceX with
norm|| - ||, then

Jim [[S(to + t)u— S(to)ul =0, Vu e X andvto > 0.

4. Let Pu = —(pu’) + qu, with p andq smooth, be a Sturm-Liouville operator on the unit interval
[0, 1] and assume there exist constamiscy such thapp > m > 0 andg > ¢y > 0 everywhere,
and consider Dirichlet boundary conditiong0) = 0 = u(1). Assume{¢,}22, are smooth
functions which constitute an orthonormal basis £31([0, 1]) of eigenfunctions:P¢,, = A\, ¢.
Show that there exists a number> 0 such that\,, > ~ for all n. Write down the solution to
the equatiord,u + Pu = 0 with initial datauo € L?([0, 1]) and show that it defines a strongly
continuous semigroup of contractions bA([0, 1]), and describe the large time behaviour.

5. (i) LetOu; + Pu; =0, j = 1,2 whereP is as in (4.1) and the functions; have the regularity
assumed in theorem 4.4.1 and satisfy Dirichlet boundarglitions: u;(x,t) = 0Va € 0Q,t > 0.
Assuming, in addition to (4.2), that

c>co>0 (6.25)

for some positive constang prove that forald <¢ < T"

sup |ug(z,t) — uz(z,t)| < e ' sup |uy (2,0) — uz(z,0)|.
€N €N

(ii) In the situation of part (i) with
Pu= — Z 0;(a;p0ku) + Z b;j0ju + cu, (6.26)
jk=1 j=1

assuming in addition to (4.2) and (6.25) also that, b; areC'' and that
Z 8jbj =0, in m7
j=1

prove thatforald <t < T

|ui(z,t) — ug(x,t)|? do < e™ 2t lui(z,0) — ug(z,0)|? d.
Q Q
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6. (i) Let K; be the heat kernel dR"™ at timet and prove directly by integration that

Kt *Ks = Kt+s

for ¢t,s > 0 (semi-group property). Use the Fourier transform and chrtian theorem to give a
second simpler proof.

(ii) Deduce that the solution operatof§¢) = K, define a strongly continuous semigroup of
contractions orL? (R™) Vp < co.

(i) Show that the solution operatgi(t) : L'(R") — L>°(R") for the heat initial value problem
satisfies|S(t)|| 1~ < ct~ 2 for positivet, or more explicitly, that the solution(t) = S;u(0)
satisfied|u(t)|| L=~ < et~ 2 ||u(0)]| 11, Or:

sup |u(z,t)] < ct*”/2/|u(x,0)|dx

for some positive numbet, which should be found.

(iii) Now let n = 4. Deduce, by considering = w,, that if the inhomogeneous terf € S(R*)

is a function ofx only, the solution ofu; — Au = F with zero initial data converges to some limit
ast — oo. Try to identify the limit.

. (i) Letu(t, ) be a twice continuously differentiable solution of the waeggiation orR x R"™ for

n = 3 which is radial, i.e. a function of = ||z|| and¢. By lettingw = ru deduce that is of the

form

(if) Show that the solution with initial data(0,-) = 0 andw(0,-) = G, whereG is radial and
even function, is given by

1 r—+t
ult,r) = o / oG (p)dp.

r—t

(iii) Hence show that for initial data:(0,-) € C*(R") andu.(0,-) € C?*(R") the solution
u = u(t, =) need only be irC?(R x R™). Contrast this with the case of one space dimension.

. Write down the solution of the Schrodinger equatign= iu,, with 27-periodic boundary con-

ditions and initial data:(x,0) = ug(z) smooth an®r-periodic inz, and show that the solution
determines a strongly continuous group of unitary opesator L%([—, 7]). Do the same for
Dirichlet boundary conditions i.e.(—m,t) = 0 = u(m,t) forall t € R.

. (i) Write the one dimensional wave equation — u,, = 0 as a first order in time evolution

equation forl/ = (u, uy).

(i) Use Fourier series to write down the solution with iaitdatau (0, -) = ug andu(0,-) = uy
which are smootR2r-periodic and have zero mea; (0) = 0.

(iii) Show that||uH§.I;w =220 Im/?|i(m)]* defines a norm on the space of smodthperiodic
functions with zero mean. The corresponding complete Sntapace is the case= 1 of

Hiep = {3 alm)e™ = fully, = 7 [mf[a(m)[? < oo}

m=#£0 m##0

the Hilbert space of zero me&@m-periodic H* functions.
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10.

11.

(iv) Show that the solution defines a group of unitary opesato the Hilbert space

X ={U = (u,v) : we H,, andv e L*([-m,7])}.

per

(v) Explain the “unitary” part of your answer to (iv) in terna$ the energy
E(t) = / (u? +u?) de .

(vi) Show that||U(t)||H;#®H£” = H(U(),Ul)HH;:—Tl@H;ET (preservation of regularity).

(a) Deduce from the finite speed of propagation resultiferwave equation (lemma 5.4.2) that
a classical solution of the initial value problemy = 0, u(0,t) = f, uw:(0,z) = g, with f,g €
D(R™) given is unique.

(b) The Kirchhoff formula for solutions of the wave equatian= 3 for initial datau(0, ) =
0,u:(0,-) = g is derived using the Fourier transform whene S(R™). Show that the valid-
ity of the formula can be extended to any smooth funcgoa C°(R").(Hint: finite speed of
propagation).

Write out and prove Stone’s theorem for the case of theefifiinensional Hilbert spacg” (so
that each operatdy (¢) is now a unitary matrix).
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