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Partial Differential Equations Example sheet 4

David Stuart
dmas2@cam.ac.uk

4 Parabolic equations

In this section we consider parabolic operators of the form

Lu = ∂tu + Pu

where

Pu = −
n∑

j,k=1

ajk∂j∂ku +
n∑

j=1

bj∂ju + cu (4.1)

is an elliptic operator. Throughout this sectionajk = akj, bj, c are continuous functions,
and

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤ M‖ξ‖2 (4.2)

for some positive constantsm,M and allx, t andξ. The basic example is the heat, or
diffusion, equationut − ∆u = 0 , which we start by solving, first forx in an interval
and then inR

n. We then show that in both situations the solutions fit into anabstract
framework of what is called asemi-group of contraction operators. We then discuss
some properties of solutions of general parabolic equations (maximum principles and
regularity theory).

4.1 The heat equation on an interval

Consider the one dimensional heat equationut − uxx = 0 for x ∈ [0, 1], with Dirich-
let boundary conditionsu(0, t) = 0 = u(1, t). Introduce the Sturm-Liouville operator
Pf = −f ′′, with these boundary conditions. Its eigenfunctionsφm =

√
2 sin mπx con-

stitute an orthonormal basis forL2([0, 1]) (with inner product(f, g)L2 =
∫

f(x)g(x)dx,
considering here real valued functions). The eigenvalue equation isPφm = λmφm with
λm = (mπ)2. In terms ofP the equation is:

ut + Pu = 0

and the solution with initial data

u(0, x) = u0(x) =
∑

(φm, u0)L2φm ,
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is given by
u(x, t) =

∑
e−tλm(φm, u0)L2φm . (4.3)

(In this expression
∑

means
∑∞

m=1.) An appropriate Hilbert space is to solve for
u(·, t) ∈ L2([0, 1]) given u0 ∈ L2, but the presence of the factore−tλm = e−tm2π2

means the solution is far more regular fort > 0 than fort = 0:

Theorem 4.1.1 Let u0 =
∑

(φm, u0)L2φm be the Fourier sine expansion of a function
u0 ∈ L2([0, 1]). Then the series(4.3)defines a smooth functionu(x, t) for t > 0, which
satisfiesut = uxx and limt↓0 ‖u(x, t) − u0(x)‖L2 = 0.

Proof Term by term differentiation of the series with respect tox, t has the effect only
of multiplying by powers ofm . For t > 0 the exponential factore−tλm = e−tm2π2

thus ensures the convergence of these term by term differentiated series, absolutely and
uniformly in regionst ≥ θ > 0 for any positiveθ . It follows that for positivet the series
defines a smooth function, which can be differentiated term by term, and which can be
seen to solveut = uxx . To prove the final assertion in the theorem, choose for each
positiveǫ, a natural numberN = N(ǫ) such that

∑∞
N+1(φm, u0)

2
L2 < ǫ2/42 . Let t0 > 0

be such that for|t| < t0

‖
N∑

1

(e−tλm − 1)(φm, u0)L2φm‖L2 ≤ ǫ

2
.

(This is possible because it is just a finite sum, each term of which has limit zero). Then
the triangle inequality gives (for0 < t < t0):

‖u(x, t) − u0(x)‖L2 ≤ ‖
∞∑

1

(e−tλm − 1)(φm, u0)L2φm‖L2

≤ ǫ

2
+ 2 × ‖

∞∑

N+1

(φm, u0)L2φm‖L2 ≤ ǫ

which implies thatlimt↓0 ‖u(x, t)−u0(x)‖L2 = 0 sinceǫ is arbitrary. (In the last bound,
the restriction tot positive is crucial because it ensures thate−tλm ≤ 1.) 2

Theinstantaneous smoothingeffect established in this theorem is an important prop-
erty of parabolic pde. In the next section it will be shown to occur for the heat equation
on R

n also.
The formula (4.3) also holds, suitably modified, whenP is replaced by any other

Sturm-Liouville operator with orthonormal basis of eigenfunctionsφm. For example,
for if Pu = −u′′ on [−π, π]) with periodic boundary conditions: in this caseλm = m2

andφm = eimx/
√

2π for m ∈ Z .

4.2 The heat kernel
The heat equation isut = ∆u where∆ is the Laplacian on the spatial domain. For the
case of spatial domainRn the distribution defined by the function

K(x, t) =

{
1√

4πtn
exp[−‖x‖2

4t
] if t > 0,

0 if t ≤ 0,
(4.4)

2



C
op

yr
ig

ht
 ©

 2
01

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

is the fundamental solution for the heat equation (inn space dimensions). This can
be derived slightly indirectly: first using the Fourier transform (in the space variablex
only) the following formula for the solution of the initial value problem

ut = ∆u , u(x, 0) = u0(x) , u0 ∈ S(Rn) . (4.5)

Let Kt(x) = K(x, t) and let∗ indicate convolution in the space variable only, then

u(x, t) = Kt ∗ u0(x) (4.6)

defines fort > 0 a solution to the heat equation and by the approximation lemma (see
question 2 sheet 3)limt→0+ u(x, t) = u0(x). Once this formula has been derived for
u0 ∈ S(Rn) using the fourier transform it is straightforward to verifydirectly that it
defines a solution for a much larger class of initial data, e.g. u0 ∈ Lp(Rn), and the
solution is in fact smooth for all positivet (instantaneous smoothing).

TheDuhamel principlegives the formula for the inhomogeneous equation

ut = ∆u + F , u(x, 0) = 0 (4.7)

asu(x, t) =
∫ t

0
U(x, t, s)ds, whereU(x, t, s) is obtained by solving the family of ho-

mogeneous initial value problems:

Ut = ∆U , U(x, s, s) = F (x, s) . (4.8)

This gives the formula (withF (x, t) = 0 for t < 0)

u(x, t) =

∫ t

0

Kt−s ∗ F (·, s) ds =

∫ t

0

Kt−s(x − y)F (y, s) ds = K ⊛ F (x, t) ,

for the solution of (4.7), where⊛ means space-time convolution.

4.3 Parabolic equations and semigroups
In this section we show that the solution formulae just obtained define semi-groups in
the sense of definition 6.1.1.
Theorem 4.3.1 (Semigoup property - Dirichlet boundary conditions) The solution op-
erator for the heat equation given by(4.3)

S(t) : u0 7→ u(·, t)
defines a strongly continuous one parametersemigroupof contractions on the Hilbert
spaceL2([0, 1]).

Proof S(t) is defined fort ≥ 0 onu ∈ L2([0, 1]) by

S(t)
∑

m

(φm, u)L2φm =
∑

m

e−tλm(φm, u)L2φm

and since|e−tλm| ≤ 1 for t ≥ 0 and ‖u‖2
L2 =

∑
m(φm, u)2

L2 < ∞ this mapsL2

into L2 and verifies the first two conditions in definition 6.1.1. The strong continuity
condition (item 4 in definition 6.1.1) was proved in theorem 4.1.1. Finally, the fact
that the{S(t)}t≥0 are contractions onL2 is an immediate consequence of the fact that
|e−tλm| ≤ 1 for t ≥ 0. 2

To transfer this result to the heat kernel solution for wholespace given by (4.6), note
the following properties of the heat kernel:

3
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• Kt(x) > 0 for all t > 0, x ∈ R
n,

•
∫

Rn Kt(x)dx = 1 for all t > 0,

• Kt(x) is smooth fort > 0, x ∈ R
n, and fort fixedKt(·) ∈ S(Rn),

the following result concerning the solutionu(·, t) = S(t)u0 = Kt ∗ u0 follows from
basic properties of integration (see appendix to§2 on integration):

• for u0 ∈ Lp(Rn) the functionu(x, t) is smooth fort > 0, x ∈ R
n and satisfies

ut − ∆u = 0,

• ‖u(·, t)‖Lp ≤ ‖u0‖Lp andlimt→0+ ‖u(·, t) − u0‖Lp = 0 for 1 ≤ p < ∞.

From these and the approximation lemma (question 2 sheet 3) we can read off the theo-
rem:

Theorem 4.3.2 (Semigroup property -Rn) (i) The formulau(·, t) = S(t)u0 = Kt ∗u0

defines foru0 ∈ L1 a smooth solution of the heat equation fort > 0 which takes on the
initial data in the sense thatlimt→0+ ‖u(·, t) − u0‖L1 = 0.

(ii) The family{S(t)}t≥0 also defines a strongly continuous semigroup of contrac-
tions onLp(Rn) for 1 ≤ p < ∞.

(iii) If in addition u0 is continuous thenu(x, t) → u0(x) ast → 0+ and the conver-
gence is uniform ifu0 is uniformly continuous.

The properties of the heat kernel listed above also imply a maximum principle for the
heat equation, which says that the solution always takes values in between the minimum
and maximum values taken on by the intial data:

Lemma 4.3.3 (Maximum principle - heat equation onR
n) Let u = u(x, t) be given

by (4.6). If a ≤ u0 ≤ b thena ≤ u(x, t) ≤ b for t > 0, x ∈ R
n.

Related maximum principle bounds hold for general second order parabolic equations,
as will be shown in the next section.

4.4 The maximum principle
Maximum principles for parabolic equations are similar to the elliptic case, once the
correct notion of boundary is understood. IfΩ ⊂ R

n is an open bounded subset with
smooth boundary∂Ω and forT > 0 we defineΩT = Ω × (0, T ] then the parabolic
boundary of the space-time domainΩT is (by definition)

∂parΩT = ΩT − ΩT = Ω × {t = 0} ∪ ∂Ω × [0, T ] .

We consider variable coefficient parabolic operators of theform

Lu = ∂tu + Pu

as in (4.1), still with the uniform ellipticity assumption (4.2) onP .

Theorem 4.4.1 Letu ∈ C(ΩT ) have derivatives up to second order inx and first order
in t which are continuous inΩT , and assumeLu = 0. Then

4
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• if c = 0 (everywhere) thenmax
ΩT

u(x, t) = max
∂parΩT

u(x, t), and

• if c ≥ 0 (everywhere) thenmax
ΩT

u(x, t) ≤ max
∂parΩT

u+(x, t), and

max
ΩT

|u(x, t)| = max
∂parΩT

|u(x, t)| .

whereu+ = max{u, 0} is the positive part of the functionu.

Proof We prove the first case (whenc = 0 everywhere). To prove the maximum
principle bound, consideruǫ(x, t) = u(x, t) − ǫt which verifies, forǫ > 0, the strict
inequalityLuǫ < 0 . First prove the result foruǫ:

max
ΩT

uǫ(x, t) = max
∂parΩT

uǫ(x, t)

Since∂parΩT ⊂ ΩT the left side is automatically≥ the right side. If the left side were
strictly greater there would be a point(x∗, t∗) with x∗ ∈ Ω and0 < t∗ ≤ T at which the
maximum value is attained:

uǫ(x∗, t∗) = max
(x,t)∈ΩT

uǫ(x, t) .

By calculus first and second order conditions:∂ju
ǫ = 0, uǫ

t ≥ 0 and∂2
iju

ǫ
x ≤ 0 (as a

symmetric matrix - i.e. all eigenvalues are≤ 0). These contradictLuǫ < 0 at the point
(x∗, t∗). Therefore

max
ΩT

uǫ(x, t) = max
∂parΩT

uǫ(x, t) .

Now let ǫ ↓ 0 and the result follows. The proof of the second case is similar. 2

4.5 Regularity for parabolic equations
Consider the Cauchy problem for the parabolic equationLu = ∂tu + Pu = f , where

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

bj∂ju + cu (4.9)

with initial datau0. For simplicity assume that the coefficients are all smooth functions
of x, t ∈ Ω∞. The weak formulation ofLu = f is obtained by multiplying by a test
functionv = v(x) and integrating by parts, leading to (where( · ) means theL2 inner
product defined by integration overx ∈ Ω):

(ut , v ) + B(u, v) = (f, v) , (4.10)

B(u, v) =

∫ (∑

jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)
dx .

To give a completely precise formulation it is necessary to define in which sense
the time derivativeut exists. To do this in a natural and general way requires the intro-
duction of Sobolev spacesHs for negatives - see§5.9 and§7.1.1-§7.1.2 in the book of
Evans. However stronger assumptions on the initial data andinhomogeneous term are
made a simpler statement is possible. (In the following statementu(t) means the almost
everywhere defined function oft taking values in a space of functions ofx.)

5
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Theorem 4.5.1 For u0 ∈ H1
0 (Ω) andf ∈ L2(ΩT ) there exists

u ∈ L2([0, T ]; H2(Ω) ∩ L∞([0, T ]; H1
0 (Ω))

with time derivativeut ∈ L2(ΩT ) which satisfies(4.10) for all v ∈ H1
0 (Ω) and almost

everyt ∈ [0, T ] and limt→0+ ‖u(t) − u0‖L2 = 0. Furthermore it is unique and has the
parabolic regularityproperty:

∫ T

0

(‖u(t)‖2
H2(Ω)+‖ut‖L2(Ω) ) dt+ess sup

0≤t≤T

‖u(t)‖2
H1

0
(Ω) ≤ C(‖f‖L2(ΩT )+‖u0‖H1

0
(Ω)) .

(4.11)

The time derivative is here to be understood in a weak/distributional sense as discussed
in the sections of Evans’ book just referenced, and the proofof the regularity (4.11) is in
§7.1.3 of the same book. In the following result we will just verify that the bound holds
for smooth solutions of the inhomogeneous heat equation on aperiodic interval:

Theorem 4.5.2 The Cauchy problem

ut − uxx = f , u(x, 0) = u0(x)

wheref = f(x, t) is a smooth function which is2π-periodic inx, and the initial value
u0 is also smooth and2π-periodic, admits a smooth solution fort > 0, 2π-periodic in
x, which verifies the parabolic regularity estimate:

∫ T

0

( ‖ut(t)‖2
L2 + ‖u(t)‖2

H2 ) dt ≤ C ( ‖u0‖2
H1 +

∫ T

0

∫ π

−π

|f(x, t)|2 dxdt ) .

Here the norms inside the time integral are the Sobolev normson2π-periodic functions
of x taken at fixed time.

Proof To prove existence, search for a solution in Fourier form,u =
∑

û(m, t)eimx

and obtain the ODE

∂tû(m, t) + m2û(m, t) = f̂(m, t) , û(m, 0) = û0(m)

which has solution

û(m, t) = e−m2tû0(m) +

∫ t

0

e−m2(t−s)f̂(m, s) ds .

Now by properties of Fourier series,û0(m) is a rapidly decreasing sequence, and the
same is true for̂f(m, t) locally uniformly in time, since

max
0≤t≤T

mj|f̂(m, t)| ≤ 1

2π

∫ π

−π

max
0≤t≤T

|∂j
xf(x, t)| dx .

Now, estimatinĝu(m, t) for 0 ≤ t ≤ T simply as

|û(m, t)| ≤ |û0(m)| + |T | max
0≤t≤T

|f̂(m, t)| ,

6
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we see that̂u(m, t) is a rapidly decreasing sequence sinceû0(m) andf̂(m, t) are. Differ-
entiation in time just gives factors ofm2, and so∂j

t û(m, t) is also rapidly decreasing for
eachj ∈ N . Thereforeu =

∑
û(m, t)eimx defines a smooth function for positive time,

and it verifies the equation (by differentiation through thesum, since this is allowed by
rapidly decreasing property just established.)

To obtain the estimate, we switch to energy methods: multiply the equation byut

and integrate. This leads to

∫ T

0

∫ π

−π

u2
t dxdt +

∫ π

−π

u2
x dx

∣∣
t=T

=

∫ π

−π

u2
x dx

∣∣
t=0

+

∫ T

0

∫ π

−π

fut dxdt .

Using the Ḧolder inequality on the final term, this gives an estimate

∫ T

0

‖ut(t)‖2
L2 dt + max

0≤t≤T
‖u(t)‖2

H1 ≤ C
(
‖u0‖2

H1 +

∫ T

0

∫ π

−π

|f(x, t)|2 dxdt
)

.

(Here and belowC > 0 is just a positive constant whose precise value is not important).
To obtain the full parabolic regularity estimate from this,it is only necessary to use the
equation itself to estimate

∫ T

0

‖uxx(t)‖2
L2 dt ≤ C

(∫ T

0

‖ut(t)‖2
L2 dt +

∫ T

0

‖f(x, t)‖2
L2 dt

)
,

and combining this with the previous bound completes the proof. 2

The parabolic regularity estimate in this theorem can alternatively be derived from
the Fourier form of the solution (exercise).

5 Hyperbolic equations

A second order equation of the form

utt +
∑

j

αj∂t∂ju + Pu = 0

with P as in (4.1) (with coefficients potentially depending upon t and x), is strictly hy-
perbolic if the principal symbol

σ(τ, ξ; t, x) = −τ 2 − (α · ξ)τ +
∑

jk

ajkξjξk

considered as a polynomial inτ has two distinct real rootsτ = τ±(ξ; t, x) for all nonzero
ξ. We will mostly study the wave equation

utt − ∆u = 0 , (5.12)

starting with some representations of the solution for the wave equation. In this section
we writeu = u(t, x), rather thanu(x, t), for functions of space and time to fit in with
the most common convention for the wave equation.

7
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5.1 The one dimensional wave equation: general solution
Introducing characteristic coordinatesX± = x ± t, the wave equation takes the form
∂2

X+X
−

u = 0, which has general classical solutionF (X−) + G(X+), for arbitraryC2

functionsF,G (by calculus). Therefore, the generalC2 solution ofutt − uxx = 0 is

u(t, x) = F (x − t) + G(x + t)

for arbitraryC2 functionsF,G. (This can be proved by changing to the characteristic
coordinatesX± = x ± t , in terms of which the wave equation is∂2u

∂X+∂X
−

= 0.
From this can be derived the solution at timet > 0 of the inhomogeneous initial

value problem:
utt − uxx = f (5.13)

with initial data
u(0, x) = u0(x) , ut(0, x) = u1(x) . (5.14)

u(t, x) =
1

2

(
u0(x− t)+u0(x+ t)

)
+

1

2

∫ x+t

x−t

u1(y) dy +
1

2

∫ t

0

∫ x+t−s

x−t+s

f(s, y) dyds .

(5.15)
Notice that there is again a “Duhamel principle” for the effect of the inhomogeneous

term since
1

2

∫ t

0

∫ x+t−s

x−t+s

f(s, y) dyds =

∫ t

0

U(t, s, x)ds

whereU(t, s, x) is the solution of thehomogeneousproblem with dataU(s, s, x) = 0
and∂tU(s, s, x) = f(s, x) specified att = s.

Theorem 5.1.1 Assuming that(u0, u1) ∈ C2(R) × C1(R) and thatf ∈ C1(R × R) the
formula(5.14)defines aC2(R × R) solution of the wave equation, and furthermore for
each fixed timet, the mapping

Cr × Cr−1 → Cr × Cr−1

(u0(·), u1(·)) 7→ (u(t, ·), ut(t, ·))

is continuous for each integerr ≥ 2 . (Well-posedness inCr × Cr−1.)

The final property stated in the theorem does not hold in more than one space dimension
(question 7). This is the reason Sobolev spaces are more appropriate for the higher
dimensional wave equation.

5.2 The one dimensional wave equation on an interval

Next consider the problemx ∈ [0, 1] with Dirichlet boundary conditionsu(t, 0) =
0 = u(t, 1). Introduce the Sturm-Liouville operatorPf = −f ′′, with these boundary
conditions as in§4.1, its eigenfunctions beingφm =

√
2 sin mπx with eigenvaluesλm =

(mπ)2. In terms ofP the wave equation is:

utt + Pu = 0

8



C
op

yr
ig

ht
 ©

 2
01

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

and the solution with initial data

u(0, x) = u0(x) =
∑

û0(m)φm , ut(0, x) = u1(x) =
∑

û1(m)φm ,

is given by

u(t, x) =
∞∑

m=1

cos(t
√

λm)û0(m)φm +
sin(t

√
λm)√

λm

û1(m)φm

with an analogous formula forut. Recall the definition of the Hilbert spaceH1
0 ((0, 1)) as

the closure of the functions inC∞
0 ((0, 1))1 with respect to the norm given by‖f‖2

H1 =∫ 1

0
f 2 + f ′2 dx. In terms of the basisφm the definition is:

H1
0 ((0, 1)) = {f =

∑
f̂mφm : ‖f‖2

H1 =
∞∑

m=1

(1 + m2π2)|f̂m|2 < ∞} .

(In all these expressions
∑

means
∑∞

m=1.) As equivalent norm we can take
∑

λm|f̂m|2.
An appropriate Hilbert space for the wave equation with these boundary conditions is to
solve for(u, ut) ∈ X whereX = H1

0 ⊕ L2, and precisely we will take the following:

X = {(f, g) = (
∑

f̂mφm,
∑

ĝmφm) : ‖(f, g)‖2
X =

∑
(λm|f̂m|2 + |ĝm|2) < ∞} .

Now the effect of the evolution on the coefficientsû(m, t) andût(m, t) is the map

(
û(m, t)
ût(m, t)

)
7→

(
cos(t

√
λm) sin(t

√
λm)√

λm

−
√

λmsin(t
√

λm) cos(t
√

λm)

)(
û(m, 0)
ût(m, 0)

)
(5.16)

Theorem 5.2.1 The solution operator for the wave equation

S(t) :

(
u0

u1

)
7→

(
u(t, ·)
ut(t, ·)

)

defined by(5.16)defines a strongly continuousgroupof unitary operators on the Hilbert
spaceX, as in definition 6.3.1.

5.3 The wave equation onRn

To solve the wave equation onRn take the Fourier transform in the space variables to
show that the solution is given by

u(t, x) = (2π)−n

∫
expiξ·x(cos(t‖ξ‖)û0(ξ) +

sin(t‖ξ‖)
‖ξ‖ û1(ξ))dξ (5.17)

1i.e. smooth functions which are zero outside of a closed set[a, b] ⊂ (0, 1)

9
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for initial valuesu(0, x) = u0(x), ut(0, x) = u1(x) in S(Rn). The Kirchhoff formula
arises from some further manipulations with the fourier transform in the casen = 3 and
u0 = 0 and gives the following formula

u(t, x) =
1

4πt

∫

y:‖y−x‖=t

u1(y) dΣ(y) (5.18)

for the solution at timet > 0 of utt − ∆u = 0 with initial data(u, ut) = (0, u1). The
solution for the inhomogeneous initial value problem with general Schwartz initial data
u0, u1 can then be derived from the Duhamel principle, which takes the same form as in
one space dimension (as explained in§5.1).

5.4 The energy identity and finite propagation speed

Lemma 5.4.1 (Energy identity) If u is aC2 solution of the wave equation(5.12), then

∂t

(u2
t + |∇u|2

2

)
+ ∂i

(
−ut∂iu

)
= 0

where∂i = ∂
∂xi .

From this and the divergence theorem some important properties follow:

Theorem 5.4.2 (Finite speed of propagation)If u ∈ C2 solves the wave equation(5.12),
and if u(0, x) and ut(0, x) both vanish for‖x − x0‖ < R, thenu(t, x) vanishes for
‖x − x0‖ < R − |t| if |t| < R.

Proof Notice that the energy identity can be written divt,x(e, p) = 0, where

(e, p) =
(u2

t + |∇u|2
2

,−ut∂1u, · · · − ut∂nu
)
∈ R

1+n .

Let t0 > 0 and consider the backwards light cone with vertex(t0, x0), i.e. the set

{(t, x) ∈ R
1+3 : t ≤ t0, ‖x − x0‖ ≤ t0 − t} .

The outwards normal to this at(t, x) is ν = 1√
2
(1, x−x0

‖x−x0‖) ∈ R
1+n, which satisfies

ν · (e, p) ≥ 0 by the Cauchy-Schwarz inequality. Integrating the energy identity over the
region formed by intersecting the backwards light cone withthe slab{(t, x) ∈ R

1+3 :
0 ≤ t ≤ t1} , and using the divergence theorem then leads to

∫
‖x−x0‖≤t0−t1

e(t1, x) dx ≤∫
‖x−x0‖≤t0

e(0, x) dx . This implies the result by choosingR = t0 . 2

Theorem 5.4.3 (Regularity for the wave equation)For initial data u(0, x) = u0(x)
andut(0, x) = u1(x) in S(Rn), the formula(5.17)defines a smooth solution of the wave
equation(5.12), which satisfies the energy conservation law

1

2

∫

Rn

ut(t, x)2 + ‖∇u(t, x)‖2 dx = E = constant .

10
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Furthermore, at each fixed timet there holds:

‖(u(t, ·), ut(t, ·))‖Hs+1×Hs ≤ C‖(u0(·), u1(·))‖Hs+1×Hs , C > 0 (5.19)

for eachs ∈ Z+ . Thus the wave equation is well-posed in the Sobolev normsHs+1×Hs

and regularity is preserved when measured in the SobolevL2 sense.

Proof The fact that (5.17) defines a smooth function is a consequence of the theorems
on the properties of the Fourier transform and on differentiation through the integral
in §2, which is allowed by the assumption that the initial data are Schwartz functions.
Given this, it is straightforward to check that (5.17) defines a solution to the wave equa-
tion. Energy conservation follows by integrating the identity in lemma 5.4.1. Energy
conservation almost gives (5.19) fors = 0. It is only necessary to bound‖u(t, ·)‖2

L2 ,
which may be done in the following way. To start, using energyconservation, we have:

∣∣ d

dt
‖u‖2

L2

∣∣ =
∣∣ 2(u, ut)L2

∣∣ ≤ ‖u‖L2‖ut‖L2 ≤
√

2E‖u‖L2

This implies thatFǫ(t) = (ǫ + ‖u(t, ·)‖2
L2)

1

2 satisfies2, for any positiveǫ

Ḟǫ(t) ≤
√

2E

and hence‖u(t, ·)‖L2 ≤ Fǫ(t) ≤ (ǫ + ‖u(0, ·)‖2
L2)

1

2 +
√

2Et, for any ǫ > 0. This
completes the derivation of (5.19) fors = 0 . The corresponding cases of (5.19) for
s = 1, 2 . . . are then derived by successively differentiating the equation, and applying
the energy conservation law to the differentiated equation. 2

Remark 5.4.4 Well-posedness and preservation of regularity do not hold for the wave
equation when measured in uniform normsCr × Cr−1, except in one space dimension,
see question 7.

Remark 5.4.5 For initial data (u0, u1) ∈ Hs+1 × Hs there is a distributional solution
(u(t, ·), ut(t, ·)) ∈ Hs+1 × Hs at each time, which can be obtained by approximation
using density ofC∞

0 in the Sobolev spacesHs and the well-posedness estimate(5.19).

6 One-parameter semigroups and groups

If A is a bounded linear operator on a Banach space its norm is

‖A‖ = sup
u∈X,u 6=0

‖Au‖
‖u‖ , (operator or uniform norm).

This definition implies that ifA,B are bounded linear operators onX then‖AB‖ ≤
‖A‖‖B‖ .

2Theǫ is introduced to avoid the possibility of dividing by zero.

11
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6.1 Definitions
Definition 6.1.1 A one-parameter family of bounded linear operators{S(t)}t≥0 on a
Banach spaceX forms a semigroup if

1. S(0) = I (the identity operator) , and

2. S(t + s) = S(t)S(s) for all t, s ≥ 0 (semi-group property).

3. It is called a uniformly continuous semigroup if in addition to (1) and (2):

lim
t→0+

‖S(t) − I‖ = 0 , (uniform continuity).

4. It is called a strongly continuous (orC0) semigroup if in addition to (1) and (2):

lim
t→0+

‖S(t)u − u‖ = 0 ,∀u ∈ X (strong pointwise continuity).

5. If ‖S(t)‖ ≤ 1 for all t ≥ 0 the semigroup{S(t)}t≥0 is called a semigroup of
contractions.

Notice that in 3 the symbol‖ · ‖ means the operator norm, while in 4 the same symbol
means the norm on vectors inX. Also observe that uniform continuity is a stronger
condition than strong continuity.

6.2 Semigroups and their generators
For ordinary differential equationṡx = Ax, whereA is ann×n matrix, the solution can
be writtenx(t) = etAx(0) and there is a1− 1 corespondence between the matrixA and
the semigroupS(t) = etA on R

n. In this subsection3 we discuss how this generalizes.
Uniformly continuous semigroups have a simple structure which generalizes the fi-

nite dimensional case in an obvious way - they arise as solution operators for differential
equations in the Banach spaceX:

du

dt
+ Au = 0 , for u(0) ∈ X given. (6.20)

Theorem 6.2.1 {S(t)}t≥0 is a uniformly continuous semgroup onX if and only if there
exists a unique bounded linear operatorA : X → X such thatS(t) = e−tA =∑∞

j=0(−tA)j/j!. This semigroup gives the solution to(6.20)in the formu(t) = S(t)u(0),
which is continuously differentiable intoX. The operatorA is called the infinitesimal
generator of the semigroup{S(t)}t≥0.

This applies to ordinary differential equations whenA is a matrix. It is not very useful
for partial differential equations because partial differential operators are unbounded,
whereas in the foregoing theorem the infinitesimal generator was necessarily bounded.
For example for the heat equation we need to takeA = −∆, the laplacian defined on
some appropriate Banach space of functions. Thus it is necessary to consider more
general semigroups, in particular the strongly continuoussemigroups. An unbounded
linear operatorA is a linear map from a linear subspaceD(A) ⊂ X into X (or more
generally into another Banach spaceY ). The subspaceD(A) is called the domain ofA.
An unbounded linear operatorA : D(A) → Y is said to be

3This subsection is for background information only

12
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• densely definedif D(A) = X, where the overline means closure in the norm of
X, and

• closedif the graphΓA = {(u,Au)|u∈D(A)} ⊂ X × Y is closed inX × Y .

A class of unbounded linear operators suitable for understanding strongly continuous
semigroups is the class ofmaximal monotoneoperators in a Hilbert space:

Definition 6.2.2 1. A linear operatorA : D(A) → X on a Hilbert spaceX is
monotone if(u,Au) ≥ 0 for all u ∈ D(A).

2. A monotone operatorA : D(A) → X is maximal monotone if, in addition, the
range ofI + A is all of X, i.e. if:

∀f ∈ X ∃u ∈ D(A) : (I + A)u = f .

Maximal monotone operators are automatically densely defined and closed, and there is
the following generalization of theorem 6.2.1:

Theorem 6.2.3 (Hille-Yosida) If A : D(A) → X is maximal monotone then the equa-
tion

du

dt
+ Au = 0 , for u(0) ∈ D(A) ⊂ X given, (6.21)

admits a unique solutionu ∈ C([0,∞); D(A)) ∩ C1([0,∞); X) with the property that
‖u(t)‖ ≤ ‖u(0)‖ for all t ≥ 0 and u(0) ∈ D(A). SinceD(A) ⊂ X is dense the
mapD(A) ∋ u(0) → u(t) ∈ X extends to a linear mapSA(t) : X → X and by
uniqueness this determines a strongly continuous semigroup of contractions{SA(t)}t≥0

on the Hilbert spaceX. OftenSA(t) is written asSA(t) = e−tA.
Conversely, given a strongly continuous semigroup{S(t)}t≥0 of contractions onX,

there exists a unique maximal monotone operatorA : D(A) → X such thatSA(t) =
S(t) for all t ≥ 0. The operatorA is the infinitesimal generator of{S(t)}t≥0 in the
sense thatd

dt
S(t)u = Au for u ∈ D(A) andt ≥ 0 (interpreting the derivative as a right

derivative att = 0).

6.3 Unitary groups and their generators
Semigroups arise in equations which are not necessarily time reversible. For equations
which are, e.g. the Schrödinger and wave equations, each time evolution operator has an
inverse and the semigroup is in fact a group. In this subsection4 We give the definitions
and state the main result.

Definition 6.3.1 A one-parameter family of unitary operators{U(t)}t∈R on a Hilbert
spaceX forms a group of unitary operators if

1. U(0) = I (the identity operator) , and

2. U(t + s) = U(t)U(s) for all t, s ∈ R (group property).

4In this subsection you only need to know definition 6.3.1. Theremainder is for background informa-
tion.

13
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3. It is called a strongly continuous (orC0) group of unitary operators if in addition
to (1) and (2):

lim
t→0

‖U(t)u − u‖ = 0 ,∀u ∈ X (strong pointwise continuity).

A maximal monotone operatorA which is symmetric (=hermitian), i.e. such that

(Au, v) = (u,Av) for all u, v in D(A) ⊂ X (6.22)

generates a one-parametergroupof unitary operators{U(t)}t∈R, often writtenU(t) =
e−itA, by solving the equation

du

dt
+ iAu = 0 , for u(0) ∈ D(A) ⊂ X given. (6.23)

It is useful to introduce the adjoint operatorA∗ via the Riesz representation theorem:
first of all let

D(A∗) = {u ∈ X : the mapv 7→ (u,Av) extends to a

bounded linear functionalX → C}

so thatD(A∗) is a linear space, and foru ∈ D(A∗) there exists a vectorwu such that
(wu, v) = (u,Av) (by Riesz representation). The mapu → wu is linear onD(A∗)
and so we can define an unbounded linear operatorA∗ : D(A∗) → X by A∗u = wu,
and since we started with a symmetric operator it is clear that D(A) ⊂ D(A∗) and
A∗u = Au for u ∈ D(A); the operatorA∗ is thus an extension ofA.

Definition 6.3.2 If A : D(A) → X is an unbounded linear operator which is symmetric
and ifD(A∗) = D(A) thenA is said to be self-adjoint and we writeA = A∗.

Theorem 6.3.3 Maximal monotone symmetric operators are self-adjoint.

Theorem 6.3.4 (Stone theorem)If A is a self-adjoint operator the equation(6.23)has
a unique solution foru(0) ∈ D(A) which may be writtenu(t) = UA(t)u(0) with
‖u(t)‖ = ‖u(0‖ for all t ∈ R. It follows that theUA(t) extend uniquely to define
unitary operatorsX → X and that{UA(t)}t∈R constitutes a strongly continuous group
of unitary operators which are writtenUA(t) = e−itA.

Conversely, given a strongly continuous group of unitary operators{U(t)}t∈R there
exists a self-adjoint operatorA such thatU(t) = UA(t) = e−itA for all t ∈ R.

6.4 Worked problems
1. LetC∞

per = {u ∈ C∞(R) : u(x + 2π) = u(x)} be the space of smooth2π− periodic functions
of one variable.

(i) For f ∈ C∞
per show that there exists a uniqueu = uf ∈ C∞

per such that

−∂2u

∂x2
+ u = f.

14



C
op

yr
ig

ht
 ©

 2
01

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

(ii) Show thatIf [uf + φ] > If [uf ] for every φ ∈ C∞
per which is not identically zero, where

If : C∞
per → R is defined by

If [u] =
1

2

∫ +π

−π

(
(
∂u

∂x
)2 + u2 − 2f(x)u

)
dx.

(iii) Show that the equation
∂u

∂t
− ∂2u

∂x2
+ u = f(x),

with initial datau(0, x) = u0(x) ∈ C∞
per has, fort > 0 a smooth solutionu(t, x) such that

u(t, ·) ∈ C∞
per for each fixedt > 0, and give a representation of this solution as a Fourier series in

x. Calculatelimt→+∞ u(t, x) and comment on your answer in relation to (i).

(iv) Show thatIf [u(t, ·)] ≤ If [u(s, ·)] for t > s > 0, and thatIf [u(t, ·)] → If [uf ] ast → +∞.

Answer(i) Any solutionuf ∈ C∞
per can be represented as a Fourier series:uf =

∑
ûf (α)eiαx, as

canf . Hereα ∈ Z. The fourier coefficients are rapidly decreasing i.e. faster than any polynomial
so it is permissible to differentiate through the sum, and substituting into the equation we find that
the coefficientŝuf (α) are uniquely determined byf according to(1 + α2)ûf (α) = f̂(α), hence

uf (x) =
∑ f̂(α)

1 + α2
eiαx.

(Can also prove uniqueness by noting that if there were two solutionsu1, u2 then the difference
u = u1 − u2 would solve−uxx + u = 0. Now multply byu and integrating by parts (using
periodicity) - this implies that

∫
u2

x + u2 = 0 which implies thatu = u1 − u2 = 0.)

(ii) Calculate, using the equation satisfied byuf and integration by parts, that

If [uf + φ] − If [uf ] =
1

2

∫ π

π

(φ2
x + φ2)dx > 0

for non-zeroφ ∈ C∞
per.

(iii) Expand the solution in terms of Fourier series and thensubstitute into the equation and use
integrating factor to obtain that the solution isu(t, x) =

∑
û(α, t)eiαx where

û(α, t) = e−t(1+α2)û0(α) +

∫ t

0

e−(t−s)(1+α2)f̂(α)ds.

Carry out the integral to deduce that

û(α, t) =
f̂(α)

1 + α2
+ e−t(1+α2)

(
û0(α) − f̂(α)

1 + α2

)
.

which implies thatû(α, t) → ûf (α) = f̂(α)
1+α2 as t → +∞, and further thatu(x, t) → uf (x)

uniformly in x ast → +∞.

(iv) By (i) and (iii) we see thatu(x, t) = uf (x) + φ(x, t) whereφ̂(α, t) = e−t(1+α2)(û0(α) −
ûf (α)). Now apply (ii) and use the Parseval theorem to deduce that

If [u(t, ·)] − If [uf ] = π
∑

(1 + α2)|φ̂(α, t)|2

= π
∑

(1 + α2)e−2t(1+α2)|û0(α) − ûf (α)|2

which decreases to zero sinceû0(α) andûf (α) are rapidly decreasing.

15
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2. For the equationut − uxx + u = f , wheref = f(x, t) is a smooth function which is2π-periodic
in x, and the initial datau(x, 0) = u0(x) are also smooth and2π-periodic obtain the solution as a
Fourier seriesu =

∑
û(m, t)eimx and hence verify the parabolic regularity estimate:

∫ T

0

( ‖ut(t)‖2
L2 + ‖u(t)‖2

H2 ) dt ≤ C ( ‖u0‖2
H1 +

∫ T

0

∫ π

−π

|f(x, t)|2 dxdt ) .

Answer:Use the Fourier form of the solutionu(x, t) =
∑

m∈Zn û(m, t)eim·x at each timet, and
similarly for f , and the definition

Hs
per = {u =

∑

m∈Zn

û(m)eim·x ∈ L2 : ‖u‖2
Hs =

∑

m∈Zn

(1 + ‖m‖2)s|û(m)|2 < ∞} ,

is for the Sobolev spaces of fixed time functions2π-periodic in each co-ordinatexj and fors =
0, 1, 2, . . . . Writing ωm = 1 + ‖m‖2, and using an integrating factor the solution is given by:

û(m, t) = e−ωmtû(m, 0) +

∫ t

0

e−(t−s)ωm f̂(m, s) ds

in Fourier representation. The second term is a convolution, so by the Hausdorff-Young inequality
‖f ∗ g‖2

L2 ≤ ‖f‖2
L1‖g‖2

L2 we obtain:

∫ T

0

|
∫ t

0

e−(t−s)ωm f̂(m, s) ds |2 dt ≤
(∫ T

0

|e−tωm |dt
)2

∫ T

0

|f̂(m, t)|2dt

≤ 1

ω2
m

∫ T

0

|f̂(m, t)|2dt .

Here we have made use of
∫ T

0
e−ωmt dt = 1−e−ωmT

ωm
≤ 1

ωm
. Using this bound, and|a + b|2 ≤

2(a2 + b2), we obtain:

∫ T

0

ω2
m|û(m, t)|2 dt ≤ 2

[∫ T

0

e−2tωm dt ω2
m |û(m, 0)|2 +

∫ T

0

|f̂(m, t)|2dt
]

≤ 2
[ ωm

2
|û(m, 0)|2 +

∫ T

0

|f̂(m, t)|2dt
]
.

Now sum overm ∈ Z
n and use the Parseval theorem and definitions of‖ · ‖Hs to obtain

∫ T

0

‖u(t)‖2
H2 dt ≤ const.

[
‖u(0)‖2

H1 +

∫ T

0

|f(t)|2L2 dt
]
.

To obtain the inequality as stated it is sufficient to use the equation to obtain the same bound for∫ T

0
‖ut(t)‖2

L2 dt (with another constant).

3. (i) Define the Fourier transform̂f = F(f) of a Schwartz functionf ∈ S(Rn), and also of a
tempered distributionu ∈ S ′(Rn).

(ii) From your definition compute the Fourier transform of the distributionWt ∈ S ′(R3) given by

Wt(ψ) =< Wt, ψ >=
1

4πt

∫

‖y‖=t

ψ(y)dΣ(y)

16
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for every Schwartzψ ∈ S(R3). (HeredΣ(y) = t2dΩ(y) is the integration element on the sphere
of radiust,) and hence deduce a formula (Kirchoff) for the solution of the initial value problem
for the wave equation in three space dimensions,

∂2u

∂t2
− ∆u = 0,

with initial datau(0, x) = 0 and ∂u
∂t (0, x) = g(x), x ∈ R

3 whereg ∈ S(R3). Explain briefly why
the formula is valid for arbitrary smoothf .

(iii) Show that anyC2 solution of the initial value problem in (ii) is given by the formula derived
in (ii) (uniqueness).

(iv) Show that any two solutions of the initial value problemfor

∂2u

∂t2
+

∂u

∂t
− ∆u = 0,

with identical initial data as in (ii), also agree for anyt > 0.

Answer(i) f̂(ξ) =
∫

f(x)e−ix·ξ dx , and〈û, f〉 = 〈u, f̂〉 . This definesu ∈ S ′(Rn) since for any
f ∈ S(Rn) the Fourier transform̂f ∈ S(Rn) also; in factf 7→ f̂ is a linear homeomorphism on
S(Rn) .

(ii) Compute

< Wt, f̂ >=
1

4πt

∫

‖y‖=t

f̂(y)dΣ(y) =
t

4π

∫

Rn

f(ξ)

∫

‖Ω‖=1

e−it‖ξ‖ cos θ dΩdξ

Here we are writingΩ = (θ, φ) for the spherical polar angles fory, with the direction ofξ taken
as the “e3 axis”, so thaty · ξ = ‖ξ‖‖y‖ cos θ = t‖ξ‖ cos θ. The inner integral can be performed,
after insertingdΩ = sin θdθdφ, and equals2π × (2 sin t‖ξ‖)/(t‖ξ‖) , so that overall:

< Ŵt , f >=< Wt , f̂ >=

∫

Rn

sin t‖ξ‖
‖ξ‖ f(ξ) dξ .

This meansŴt is the distribution determined by the functionsin(t‖ξ‖)
‖ξ‖ . (This function is actually

smooth and bounded by the Taylor expansion, and so determines a tempered distribution.)

But in Fourier variables the solution of the wave equation is:

û(t, ξ) =
(
cos(t‖ξ‖)û0(ξ) +

sin(t‖ξ‖)
‖ξ‖ û1(ξ)

)

for initial valuesu(0, x) = u0(x), ut(0, x) = u1(x) in S(Rn). Comparing with the formula just
derived, and applying the convolution theorem, it follows that the solution withu0 = 0 andu1 = g
is given at each timet by u(t, ·) = Wt ∗ g, since then

û(t, ξ) = Ŵt(ξ)ĝ(ξ) =
sin(t‖ξ‖)

‖ξ‖ ĝ(ξ)

(iii) Classical solutions of the wave equation obey the energy momentum conservation law

et + ∇ · p = 0

17
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wheree = (u2
t + |∇u|2)/2 andp = −ut∇u. Integrateet + ∇ · p = 0 over the part of the

backward light cone with vertex(t0, x0), for somet0 > 0 , which lies in the slab between{t = 0}
and{t = t1 < t0}; i.e. the region

Kt0,x0
= {(t, x) ∈ R

1+3 : 0 ≤ t ≤ t1, ‖x − x0‖ ≤ t0 − t} .

Applying the divergence theorem, and noticing that ifν is the outward pointing normal on the
sloping part of the boundary of this region, thenν · (e, p) ≥ 0 by the Cauchy-Schwarz inequality,
we deduce that ∫

‖x−x0‖≤t0−t1

e(t1, x) dx ≤
∫

‖x−x0‖≤t0

e(0, x) dx . (6.24)

This implies that if the initial data are zero then the solution is zero at all later times. By time
reversal symmetry an identical argument implies the same thing for negative times. Applied to
the difference of two solutions this implies uniqueness (since by linearity the difference of two
solutions of the wave equation also solves the wave equation), and hence that any classicalC2

solution is given by the same formula as was derived in (ii).

(iv) Do essentially the same calculation as in (iii) but using this time that

et + ∇ · p = −u2
t ≤ 0

which gives the same conclusion 6.24 for positive times. (However, since time reversal symmetry
no longer holds, the argument cannot now be simply reversed to obtain the analogous inequality
for negative times).

4. Consider acontinuousfunctiont 7→ u(t) ∈ C such that|u(t)| = 1∀t andu(t + s) = u(t)u(s) for
all reals, t . Prove that there existsa ∈ R such thatu(t) = eiat. Deduce Stone’s theorem on the
Hilbert spaceC .

AnswerThere existsλ(t), defined mod2π, such thatu(t) = eiλ(t). By continuity there exists
δ > 0 such that for|t| ∈ I = (−δ,+δ) we have|u(t)−1| < 1

2 . In this intervalI, there is a unique
λ(t) ∈ (−π,+π) which is continuous and satisfiesu(t) = eiλ(t) andλ(t + s) = λ(t) + λ(s) for
s, t, s+t all in I. LetN be any integer sufficiently large that1N ∈ I, and definea = Nλ( 1

N ). Then

the semigroup property implies thatu(m
N ) = (u( 1

N ))m = eimλ( 1
N

) = eia m
N , for any integerm.

The value ofa thus defined is independent ofN chosen as above: indeed, ifa′, N ′ were another
such value we would also haveu(t) = eia′ m

N′ for all integralm. Clearly 1
NN ′

∈ I, so also defining
b = NN ′λ( 1

NN ′
) we have by the additivity ofλ thata = b = a′. Thereforea is unique, for all

such integersN with 1
N ∈ I and sou(t) = eia m

N for all suchN and allm ∈ Z. It follows from
the density ofmN in R and the continuity ofu(t) thatu(t) = eiat for all t ∈ R .

18
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6.5 Example sheet 4
1. (a) Use the change of variablesv(t, x) = etu(t, x) to obtain an “x-space” formula for the solution

to the initial value problem:

ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn).

Hence show that|u(t, x)| ≤ supx |u0(x)| and use this to deduce well-posedness in the supremum
norm (fort > 0 and allx).

If a ≤ u0(x) ≤ b for all x what can you say about the possible values ofu(t, x) for t > 0.

(b) Use the Fourier transform inx to obtain a (Fourier space) formula for the solution of:

utt − 2ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn), ut(0, ·) = u1(·) ∈ S(Rn).

2. Show that ifu ∈ C([0,∞)×R
n)∩C2((0,∞)×R

n) satisfies (i) the heat equation, (ii)u(0, x) = 0
and (iii) |u(t, x)| ≤ M and |∇u(t, x)| ≤ N for someM,N thenu ≡ 0. (Hint: multiply heat
equation byKt0−t(x−x0) and integrate over|x| < R, a < t < b. Apply the divergence theorem,
carefully letR → ∞ and thenb → t0 anda → 0 to deduceu(t0, x0) = 0.)

3. Show that ifS(t) is a strongly continuous semigroup of contractions on a Banach spaceX with
norm‖ · ‖, then

lim
t→0+

‖S(t0 + t)u − S(t0)u‖ = 0 , ∀u ∈ X and∀t0 > 0 .

4. LetPu = −(pu′)′ + qu, with p andq smooth, be a Sturm-Liouville operator on the unit interval
[0, 1] and assume there exist constantsm, c0 such thatp ≥ m > 0 andq ≥ c0 > 0 everywhere,
and consider Dirichlet boundary conditionsu(0) = 0 = u(1). Assume{φn}∞n=1 are smooth
functions which constitute an orthonormal basis forL2([0, 1]) of eigenfunctions:Pφn = λnφn.
Show that there exists a numberγ > 0 such thatλn ≥ γ for all n. Write down the solution to
the equation∂tu + Pu = 0 with initial datau0 ∈ L2([0, 1]) and show that it defines a strongly
continuous semigroup of contractions onL2([0, 1]), and describe the large time behaviour.

5. (i) Let ∂tuj + Puj = 0 , j = 1, 2 whereP is as in (4.1) and the functionsuj have the regularity
assumed in theorem 4.4.1 and satisfy Dirichlet boundary conditions:uj(x, t) = 0∀x ∈ ∂Ω, t ≥ 0.
Assuming, in addition to (4.2), that

c ≥ c0 > 0 (6.25)

for some positive constantc0 prove that for all0 ≤ t ≤ T :

sup
x∈Ω

|u1(x, t) − u2(x, t)| ≤ e−tc0 sup
x∈Ω

|u1(x, 0) − u2(x, 0)|.

(ii) In the situation of part (i) with

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +

n∑

j=1

bj∂ju + cu , (6.26)

assuming in addition to (4.2) and (6.25) also thatajk, bj areC1 and that

n∑

j=1

∂jbj = 0 , in ΩT ,

prove that for all0 ≤ t ≤ T :
∫

Ω

|u1(x, t) − u2(x, t)|2 dx ≤ e−2tc0

∫

Ω

|u1(x, 0) − u2(x, 0)|2 dx.

19
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6. (i) Let Kt be the heat kernel onRn at timet and prove directly by integration that

Kt ∗ Ks = Kt+s

for t, s > 0 (semi-group property). Use the Fourier transform and convolution theorem to give a
second simpler proof.
(ii) Deduce that the solution operatorsS(t) = Kt∗ define a strongly continuous semigroup of
contractions onLp(Rn)∀p < ∞.
(iii) Show that the solution operatorS(t) : L1(Rn) → L∞(Rn) for the heat initial value problem
satisfies‖S(t)‖L1→L∞ ≤ ct−

n
2 for positivet, or more explicitly, that the solutionu(t) = Stu(0)

satisfies‖u(t)‖L∞ ≤ ct−
n
2 ‖u(0)‖L1 , or:

sup
x

|u(x, t)| ≤ ct−n/2

∫
|u(x, 0)|dx

for some positive numberc, which should be found.
(iii) Now let n = 4. Deduce, by consideringv = ut, that if the inhomogeneous termF ∈ S(R4)
is a function ofx only, the solution ofut −∆u = F with zero initial data converges to some limit
ast → ∞. Try to identify the limit.

7. (i) Let u(t, x) be a twice continuously differentiable solution of the waveequation onR × R
n for

n = 3 which is radial, i.e. a function ofr = ‖x‖ andt. By lettingw = ru deduce thatu is of the
form

u(t, x) =
f(r − t)

r
+

g(r + t)

r
.

(ii) Show that the solution with initial datau(0, ·) = 0 andut(0, ·) = G, whereG is radial and
even function, is given by

u(t, r) =
1

2r

∫ r+t

r−t

ρG(ρ)dρ.

(iii) Hence show that for initial datau(0, ·) ∈ C3(Rn) and ut(0, ·) ∈ C2(Rn) the solution
u = u(t, x) need only be inC2(R × R

n). Contrast this with the case of one space dimension.

8. Write down the solution of the Schrodinger equationut = iuxx with 2π-periodic boundary con-
ditions and initial datau(x, 0) = u0(x) smooth and2π-periodic inx, and show that the solution
determines a strongly continuous group of unitary operators onL2([−π, π]). Do the same for
Dirichlet boundary conditions i.e.u(−π, t) = 0 = u(π, t) for all t ∈ R.

9. (i) Write the one dimensional wave equationutt − uxx = 0 as a first order in time evolution
equation forU = (u, ut).

(ii) Use Fourier series to write down the solution with initial datau(0, ·) = u0 andut(0, ·) = u1

which are smooth2π-periodic and have zero mean:ûj(0) = 0.

(iii) Show that‖u‖2
Ḣ1

per

=
∑

m 6=0 |m|2|û(m)|2 defines a norm on the space of smooth2π-periodic

functions with zero mean. The corresponding complete Sobolev space is the cases = 1 of

Ḣs
per = {

∑

m 6=0

û(m)eim·x : ‖u‖2
Ḣs

per

=
∑

m 6=0

|m|2s|û(m)|2 < ∞} ,

the Hilbert space of zero mean2π-periodicHs functions.
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(iv) Show that the solution defines a group of unitary operators in the Hilbert space

X = {U = (u, v) : u ∈ Ḣ1
per andv ∈ L2([−π, π])} .

(v) Explain the “unitary” part of your answer to (iv) in termsof the energy

E(t) =

∫ π

−π

(u2
t + u2

x) dx .

(vi) Show that‖U(t)‖Ḣs+1
per ⊕Ḣs

per
= ‖(u0, u1)‖Ḣs+1

per ⊕Ḣs
per

(preservation of regularity).

10. (a) Deduce from the finite speed of propagation result forthe wave equation (lemma 5.4.2) that
a classical solution of the initial value problem,2u = 0, u(0, t) = f, ut(0, x) = g, with f, g ∈
D(Rn) given is unique.

(b) The Kirchhoff formula for solutions of the wave equationn = 3 for initial datau(0, ·) =
0, ut(0, ·) = g is derived using the Fourier transform wheng ∈ S(Rn). Show that the valid-
ity of the formula can be extended to any smooth functiong ∈ C∞(Rn).(Hint: finite speed of
propagation).

11. Write out and prove Stone’s theorem for the case of the finite dimensional Hilbert spaceCN (so
that each operatorU(t) is now a unitary matrix).
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