Asymptotic Methods: Example Sheet 1

Send corrections to Edriss Titi est42@damtp.cam.ac.uk

February 6, 2020

The first two questions on background material are not for supervision.

1. Read Section II.1 in the notes and calculate \(\Gamma(\frac{1}{2}) \).

2. Calculate \(\lim_{R \to +\infty} \int_{0}^{R} e^{ix^2} \, dx \), with justification for any change of variables used.

Asymptotic expansions - basic properties

3. Suppose that the functions \(f \) and \(g \) have the asymptotic expansions

\[
f(z) \sim \sum_{n=0}^{\infty} a_n z^{-n}, \quad \text{and} \quad g(z) \sim \sum_{n=0}^{\infty} b_n z^{-n}
\]

as \(z \to \infty \). Show that

\[
f(z) \, g(z) \sim \sum_{n=0}^{\infty} c_n z^{-n},
\]

as \(z \to \infty \), where \(c_n = \sum_{k=0}^{n} a_{n-k} b_k \).

4. (a) Show that if a function admits as asymptotic expansion \(f(x) \sim \sum_{n=0}^{\infty} a_n x^n \) as \(x \to 0^+ \), then the \(a_n \) are determined uniquely by \(f \).

(b) Consider the function \(e(x) = \exp(-1/x) \) for \(x > 0 \). Show that, in an asymptotic expansion of the form

\[
e(x) \sim \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots,
\]

valid as \(x \to 0^+ \), all the coefficients \(\beta_0, \beta_1, \beta_2, \ldots \) are zero. Deduce that in (a) the coefficients \(\{a_n\} \) do not determine \(f \) uniquely.

5. (a) Taking \(\delta \) to be a positive constant, show that as \(z \to \infty \) in the complex plane (not necessarily along a ray)

\[
cosh(z) \sim \frac{1}{2} e^{z}
\]

in the sector \(-\frac{\pi}{2} + \delta < \arg z < \left(\frac{\pi}{2} - \delta \right) \) and

\[
cosh(z) \sim \frac{1}{2} e^{-z}
\]
in the sector \(\left(\frac{\pi}{2} + \delta \right) < \arg z < \left(\frac{3\pi}{2} - \delta \right) \). Is this still true if \(\delta = 0 \)?

(b) Find asymptotic expansions for \(\tanh z \) as \(z \rightarrow \infty \) in the complex plane, stating in which sectors they hold and specifying the Stokes lines.

Asymptotic Expansions of Real Integrals.

6. (a) Show that the Stieltjes integral

\[
F(x) = \int_0^\infty \frac{\rho(t)}{1 + xt} \, dt
\]

admits the asymptotic expansion \(F(x) \sim \sum (-1)^n a_n x^n \), \(x \rightarrow 0^+ \), where \(a_n = \int t^n \rho(t) \, dt \), under the assumption that the continuous function \(\rho \) satisfies \(\rho(t) \leq Ce^{-\epsilon t} \) for some positive \(C \), \(\epsilon \) and all \(t \geq 0 \). Deduce that \(F(x) = \int_0^\infty \frac{xe^{-t}}{1+xt} \, dt \) admits the expansion \(F(x) \sim \sum_{n=0}^\infty (-1)^n n! x^{n+1} \) as \(x \rightarrow 0^+ \). Show similarly that

\[
G(x) = \int_0^\infty \frac{e^{-t}}{(1+xt)^2} \, dt \sim \sum_{n=0}^\infty (-1)^n (n+1)! x^n , \quad (x \rightarrow 0^+).
\]

(b) Differentiating through the integral show that \(F' = G \) and comment on the relation between the two asymptotic series you just obtained. Give an example of a smooth function \(H : (0, \infty) \rightarrow (0, \infty) \) with the property that \(H \) admits an asymptotic expansion \(\sum \alpha_n x^n \) as \(x \rightarrow 0^+ \), but term-by-term differentiation does not give an asymptotic expansion for \(H' \). Show however, that if in this situation \(H' \) is continuous on \([0, \infty)\) and admits an asymptotic expansion \(\sum \beta_n x^n \) as \(x \rightarrow 0^+ \), then necessarily this expansion is given by term-by-term differentiation, i.e. \(\beta_n = (n+1)\alpha_{n+1} \).

(c) For a given small positive value of \(x \), find the value(s) of \(n \) giving the term(s) of smallest magnitude in the asymptotic expansion for \(G \). Hence, use optimal truncation to obtain an estimate of the ‘exact’ value \(G(0.1) = 0.84366660602... \) [By convention **optimal truncation** of an asymptotic expansion means keeping all terms in the expansion up to the one BEFORE the smallest.]

(d) For the case \(\rho(t) = e^{-t} \) recall from lectures that \(F(x) = \sum_{n=0}^N (-1)^n n! x^n + \text{Err}_N \) with error bound \(|\text{Err}_N| \leq (N + 1)! x^{N+1} \). Using this to define optimal truncation by \(N + 1 = \lfloor x^{-1} \rfloor \), the integer part of \(x^{-1} \), use Stirling’s formula to show that the resulting “optimal error bound” is \(O(\lfloor x^{-1} \rfloor^\frac{1}{2} \exp(-\lfloor x^{-1} \rfloor)) = o(x^M) \), as \(x \rightarrow 0^+ \) for every positive integer \(M \).

7. (a) Use integration by parts to find an asymptotic expansion, valid as \(x \rightarrow \infty \), for the exponential integral

\[
E_1(x) = \int_x^\infty \frac{e^{-t}}{t} \, dt \sim e^{-x} \left(b_1 x^{-1} + b_2 x^{-2} + b_3 x^{-3} + \ldots \right),
\]

for suitable constants \(b_1, b_2, b_3, \ldots, \). Show that the remainder is \(O(e^{-x} x^{-N-1}) \) as \(x \rightarrow \infty \), for suitable \(N \).

(b) Check your answer by making the substitution \(t = x(1+s) \) in the integral and applying Watson’s Lemma.

(c) Obtain an asymptotic expansion of \(E_1(x) \) as \(x \rightarrow 0^+ \) by considering \(\frac{d}{dx} (E_1(x) + \ln x) \) and integrating.
8. Find asymptotic expansions as $x \to \infty$ of

$$I_1(x) = \int_0^1 e^{-xt(1-t)^2} \, dt \quad \text{and} \quad I_2(x) = \int_0^\infty e^{-xt(1-t)^2} \, dt,$$

giving all terms up to and including $O(x^{-1})$.

9. By means of Laplace’s method, show that the first two terms in an asymptotic expansion as $x \to \infty$ of

$$I(x) = \int_0^{\pi/2} \exp(-xt^3 \cos t) \, dt$$

are given by

$$I(x) \sim \frac{1}{3x^{1/3}} \Gamma\left(\frac{1}{3}\right) + \left(\frac{1}{6} + \frac{8}{\pi^3}\right) \frac{1}{x} + \ldots.$$

Find the next term in the expansion.

10. Show that

$$\int_0^{\pi/4} \exp\left[x \cos \sqrt{t}\right] \, dt \sim e^x \left(\frac{2}{x} + \frac{2}{3x^2} + \ldots\right)$$

as $x \to \infty$ and obtain the corresponding asymptotic expansion when the upper limit is replaced by $4\pi^2$.