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Asymptotic Methods: Example Sheet 1

Send corrections to Henrik Latter hl278@cam.ac.uk

Michaelmas 2024

The first two questions on background material are not for supervision.

1. Based on the definition of the Gamma Function in the first lecture, calculate Γ(1
2
).

2. Calculate limR→+∞

∫ R

0
e±ix2

dx, with justification for any change of variables used.

Asymptotic expansions - basic properties

3. Determine whether the sequence of functions φn(x) = 1−cosh xn, for n = 1, 2, · · · ,
is an asymptotic sequence as x → 0.

4. Suppose that the functions f and g have the asymptotic expansions

f(z) ∼
∞
∑

n=0

an z−n , and g(z) ∼
∞
∑

n=0

bn z−n

as z −→ ∞ . Show that

f(z) g(z) ∼
∞
∑

n=0

cn z−n ,

as z −→ ∞ , where cn =
∑n

k=0 an−k bk .

5. Suppose that

f(z) ∼ a0 +
a1
z

+
a2
z2

+ . . . ,

as z −→ ∞ , where a0 6= 0 . Show by induction, or otherwise, that

1

f(z)
∼ 1

a0

∞
∑

n=0

dn
zn

,

as z → ∞, where the sequence {dn} is defined by d0 = 1 and, for n ≥ 1 ,

n
∑

k=0

dn−k ak = 0 .
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6. (a) Show that if a function admits an asymptotic expansion f(x) ∼ ∑

∞

n=0 anx
n as

x → 0+, then the an are determined uniquely by f .

(b) Consider the function
e(x) = exp

(

− 1/x
)

for x > 0 . Show that, in an asymptotic expansion of the form

e(x) ∼ β0 + β1 x + β2 x
2 + . . . ,

valid as x −→ 0+ , all the coefficients β0 , β1 , β2 , . . . are zero. Deduce that in
(a) the coefficients {an} do not determine f uniquely.

7. (a) Taking δ to be a positive constant, show that as |z| −→ ∞ in the complex plane
(not necessarily along a ray)

cosh(z) ∼ 1

2
ez

in the sector
(

−π
2
+ δ

)

< arg z <
(

π
2
− δ

)

and

cosh(z) ∼ 1

2
e−z

in the sector
(

π
2
+ δ

)

< arg z <
(

3π
2
− δ

)

. Is this still true if δ = 0? (b) Find

asymptotic expansions for tanh z as |z| → ∞ in the complex plane, stating in which
sectors they hold and specifying the Stokes lines. [Revisit this part by the end of the
term when we talk about Stokes lines].

8. Suppose that for every n = 0, 1, 2, . . . , φn(x) is an asymptotic sequence as x → x0,
and that φn(x) 6= 0 for x 6= x0. Show that for any N = 0, 1, 2, · · · , the set of
functions {φ0(x), φ1(x), · · · , φN(x)} are linearly independent near x = x0.

9. Show that, if f is continuous and f(x) = o{φ(x)} as x → ∞ , where φ is a
continuous, positive non-decreasing function of x , then

∫ x

a

f(t) dt = o{xφ(x)}

as x −→ +∞ .

Asymptotic Expansions of Real Integrals.

10. (a) Show that the Stieltjes integral

F (x) =

∫

∞

0

ρ(t)

1 + xt
dt

admits the asymptotic expansion F (x) ∼ ∑

(−1)nanx
n , (x → 0+), where an =

∫

tnρ(t) dt, under the assumption that the continuous function ρ satisfies 0 ≤ ρ(t) ≤

2
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Ce−ǫt for some positive C, ǫ and all t ≥ 0 . Deduce that F (x) =
∫

∞

0
xe−t

1+xt
dt admits

the expansion F (x) ∼ ∑

∞

n=0 (−1)n n! xn+1 as x → 0+ . Show similarly that

G(x) =

∫

∞

0

e−t

(

1 + xt
)2 dt ∼

∞
∑

n=0

(−1)n (n+ 1)! xn , (x → 0+) .

(b) Differentiating through the integral show that F ′ = G and comment on the re-
lation between the two asymptotic series you just obtained. Give an example of a
smooth function H : (0,∞) → (0,∞) with the property that H admits an asymp-
totic expansion

∑

αnx
n as x → 0+ , but term-by-term differentation does not give

an asymptotic expansion for H ′. Show however, that if in this situation H ′ is continu-
ous on [0,∞) and admits an asymptotic expansion

∑

βnx
n as x → 0+ , then neces-

sarily this expansion is given by term-by-term differentiation, i.e. βn = (n+1)αn+1 .

(c) For a given small positive value of x , find the value(s) of n giving the term(s)
of smallest magnitude in the asymptotic expansion for G . Hence, use optimal trun-
cation to obtain an estimate of the ‘exact’ value G(0.1) = 0.84366660602... [By
convention optimal truncation of an asymptotic expansion means keeping all terms
in the expansion up to the one BEFORE the smallest.]

(d) For the case ρ(t) = e−t we find F (x) =
∑N

n=0(−1)nn!xn+ErrN with error bound

|ErrN | ≤ (N + 1)!xN+1 (see Section 1 in Chapling’s Lecture Notes). Using this to
define optimal truncation by N+1 = [x−1], the integer part of x−1, use Stirling’s for-

mula to show that the resulting “optimal error bound” is O
(

[x−1]
1

2 exp(−[x−1])
)

=

o(xM) , as x → 0+ for every positive integer M .

11. (a) Use integration by parts to find an asymptotic expansion, valid as x −→ ∞ , for
the exponential integral

E1(x) =

∫

∞

x

e−t

t
dt ∼ e−x

(

b1 x
−1 + b2 x

−2 + b3 x
−3 + . . .

)

,

for suitable constants b1 , b2 , b3 , . . . . Show that the remainder is O
(

e−x x−N−1
)

as x −→ ∞ , for suitable N .

(b) Check your answer by making the substitution t = x (1+s) in the integral and
applying Watson’s Lemma.

(c) Obtain an asymptotic expansion of E1(x) as x → 0+ by considering d
dx
(E1(x) +

ln x) and integrating.

12. Find asymptotic expansions as x → ∞ of

I1(x) =

∫ 1

0

e−xt(1− t)2 dt and I2(x) =

∫

∞

0

e−xt(1− t)2 dt ,

giving all terms up to and including O
(

x−1
)

.

13. By means of Laplace’s method, show that the first two terms in an asymptotic expan-
sion as x −→ ∞ of

I(x) =

∫ π

2

0

exp(− x t3 cos t) dt

3
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are given by

I(x) ∼ 1

3x1/3
Γ

(

1

3

)

+

(

1

6
+

8

π3

)

1

x
+ . . . .

*Find the next term in the expansion.

14. Show that

∫ π
2

4

0

exp
[

x cos
√
t
]

dt ∼ ex
(

2

x
+

2

3x2
+ . . .

)

as x → ∞ and obtain the corresponding asymptotic expansion when the upper
limit is replaced by 4π2 .

4


