1. Obtain the first correction to the Stirling formula in the asymptotic expansion of the Gamma function, i.e.,
\[
\Gamma(x + 1) \sim \sqrt{2\pi x} \left(\frac{x}{e} \right)^x \left(1 + \frac{1}{12x} + \ldots \right), \quad (x \to +\infty),
\]

2. In the notes “Asymptotic Analysis of Laplace Integrals” and in lectures we derived (essentially) the asymptotic expansion
\[
\int_0^{\pi/2} \exp[x(\sin t)^2] \, dt \sim \frac{e^x}{2} \sum_{m=0}^{\infty} (-1)^m \frac{\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2} - m)} \frac{\Gamma(\frac{1}{2} + m)}{m!} x^{\frac{1}{2} + m}, \quad (x \to +\infty).
\]

By means of a change of variables and the identity\(^1\)
\[
\Gamma(z) \Gamma(1 - z) = \frac{\pi}{\sin(\pi z)},
\]
or otherwise, obtain the asymptotic expansion
\[
\int_0^{\pi/2} e^{-x \sin^2 t} \, dt \sim \left(\frac{\pi}{4x} \right)^{1/2} \left\{ 1 + \frac{1}{1! 4x} + \frac{1}{2! (4x)^2} + \ldots + \frac{1}{n!} \frac{1^{2}.3^{2} \ldots (2n - 1)^2}{(4x)^n} + \ldots \right\}.
\]

From this obtain an asymptotic expansion, as \(x \to \infty\), for the Bessel function defined by
\[
I_0(x) = \frac{1}{\pi} \int_0^{\pi} e^{x \cos \theta} \, d\theta.
\]

3. (i) Assume \(a < c < b\) and let \(f(t)\) be a function which is smooth in \((a, c) \cup (c, b)\) but has a discontinuity at \(t = c\). To be precise, assume that for all \(n = 0, 1, 2 \ldots\) the limits of the \(n^{th}\) order derivative \(f^{(n)}(t)\) as \(t \to a+, c-, c+\) and \(b-\) exist and are designated \(f^{(n)}(a+), f^{(n)}(c-), f^{(n)}(c+)\) and \(f^{(n)}(b-)\) respectively. Find the asymptotic expansion as \(|\omega| \to \infty\) of
\[
I(\omega) = \int_a^b f(t) e^{i\omega t} \, dt.
\]

\(^1\)See equation I.2 in the notes “Asymptotic Methods: Notation and Basic Definitions” and surrounding discussion for how to derive this identity.
(ii) By taking the appropriate limits in part (a), find the asymptotic expansion as \(|\omega| \to \infty \) of \(I(\omega) = \int_{-\infty}^{\infty} f(t) e^{i\omega t} \, dt \), where
\[
f(t) = \begin{cases}
-e^t & t < 0 \\
e^{-t} & t \geq 0.
\end{cases}
\]

Compare your result with the exact expression for \(I(\omega) \).

4. Review Stokes’ problem from section II of the Stationary Phase notes. Obtain the leading asymptotic behaviour as \(x \to \infty \) of
\[
\int_{a}^{\infty} f(t) \exp\left(i x (t^3 - t)\right) \, dt,
\]
where \(f \) is smooth and \(f \to 0 \) as \(t \to \pm \infty \) in the two cases: (i) \(a = -\frac{1}{\sqrt{3}} \) and (ii) \(a = 1 \).

5. Show that, as \(x \to +\infty \),
\[
\int_{0}^{\pi} \exp\left(i x (t - \sin t)\right) \, dt \sim e^n \left(\frac{6}{x}\right)^{\frac{1}{3}} \Gamma\left(\frac{4}{3}\right).
\]
How would this result differ if the lower limit of the integral were \(-\pi\)?

6. Find the leading term in the asymptotic approximations, valid as \(x \to \infty \), of
\[
(a) \int_{0}^{1} \cos\left(x t^p\right) \, dt, \quad \text{with } p > 1, \text{ real},
\]
\[
(b) \int_{0}^{\frac{\pi}{2}} \left(1 - \left(\frac{2\theta}{\pi}\right)\right)^{\gamma} \cos\left(x \cos \theta\right) \, d\theta, \quad \text{for } \gamma = 0, \gamma = -\frac{1}{2} \text{ and } \gamma = -\frac{3}{4}.
\]

7. The function \(f(\theta) \) is defined for \(\theta \) real and positive by
\[
f(\theta) = \frac{1}{2\pi i} \int_{\gamma} \exp\left(\theta \left(t + \frac{1}{3} t^3\right)\right) \, dt,
\]
where the path \(\gamma \) begins at \(\infty \) in the sector \(-\frac{\pi}{2} < \arg t < -\frac{\pi}{6}\) and ends at \(\infty \) in the sector \(\frac{\pi}{6} < \arg t < \frac{\pi}{2}\). Find the two saddle points and show that the two paths of steepest descent through these points are
\[
x = + \left(\frac{2 + y}{3 y}\right)^{\frac{1}{2}} (y - 1), \quad y > 0
\]
and
\[
x = - \left(\frac{y - 2}{3 y}\right)^{\frac{1}{2}} (y + 1), \quad y < 0,
\]
where \(t = x + iy \). You should justify carefully your choice of signs for the square roots. Show that, as \(\theta \to \infty \),
\[
f(\theta) = (\pi \theta)^{-\frac{1}{2}} \cos\left(\frac{2\theta}{3} - \frac{\pi}{4}\right) + O(\theta^{-1}).
\]
8. Use the method of steepest descents to obtain the first two non-zero terms in the asymptotic approximation
\[
\int_0^\infty \exp \left(i x \left(\frac{1}{3} t^3 + t \right) \right) dt \sim i \left(\frac{1}{x} + \frac{2}{x^3} + \ldots \frac{a_n}{x^n} + \ldots \right),
\]
as \(x \to +\infty \). Check your answer by doing an integration by parts/stationary phase argument to the integral as it stands.

(*) Find an expression for \(a_n \) for all \(n \).

9. Let
\[h(t) = i \left(t + t^2 \right). \]
Sketch the path through the point \(t = 0 \) for which \(\text{Im}(h(t)) = \text{const} \). Sketch also the path through the point \(t = 1 \) for which \(\text{Im}(h(t)) = \text{const} \).

By integrating along these paths, show that, as \(\lambda \to \infty \),
\[
\int_0^1 t^{-\frac{3}{2}} \exp \left(i \lambda \left(t + t^2 \right) \right) dt \sim \frac{c_1}{\lambda^{\frac{3}{2}}} + c_2 \frac{e^{2i\lambda}}{\lambda} + \ldots,
\]
where the constants \(c_1 \) and \(c_2 \) are to be determined.

10. (*) Apply the method of steepest descents to the integral
\[
I(k) = \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\exp[k(z-2z^{1/2})]}{z-c} \, dz,
\]
for the case \(k \to +\infty \). Here the path of integration is parallel to the imaginary axis, and \(\gamma > 1 \) is a real constant. The branch cut for \(\sqrt{z} \) is the negative real axis. Show that the two parameterized curves \(\tau \to z_\pm(\tau) \) given by
\[
z_\pm(\tau) = 1 - \tau^2 \pm 2i\tau, \quad 0 \leq \tau < \infty,
\]
are the steepest descent paths emanating from the saddle-point \(z = 1 \), and show that they form two halves of a parabola crossing the real axis at the saddle point; find the equation of the parabola in real form.

Investigate the asymptotics of \(I(k) \) as \(k \to +\infty \) in the following cases:

(i) \(c \) is real and \(< 1 \);
(ii) \(c \) is real, \(1 < c < \gamma \);
(iii) \(c = ib \) with \(b \) real and \(b > 2 \).

[You may find it convenient to use \(\tau \) as a variable of integration.]