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Asymptotic Methods: Example Sheet 3

Send corrections to Henrik Latter hl278@cam.ac.uk

Michaelmas 2024

One more Steepest-Descent Example.

1. The Hankel function H
(1)

ν(x) is defined by

H(1)
ν(x) = − 1

π

∫ i∞−π

− i∞

ei (νt−x sin t) dt ,

where the path of integration, in the complex plane, satisfies − π ≤ Re(t) < 0 .
Use the method of steepest descent to show that, as ν −→ + ∞ , one has

H(1)
ν

(

ν

cosα

)

∼ 2
1

2

(

πν tanα
)

−
1

2 eiν(tanα−α) e−
i π

4 ,

where 0 < α < π/2 . (This is the limit in which ν −→ ∞ , with x/ν a positive
constant greater than 1.) Find an equation for the path along which you integrate,
sketch it and justify that it is indeed the path of steepest descent.

Finding asymptotic expansion of solution to algebraic and transcendental equation.

2. Consider the equation

x+
√
x+ 2 ln x = t+ ln t

(a) Show that for all t ≥ 10 the above equation has a unique solutions x(t); and that
limt→∞ x(t) = ∞.

(b) Find the first 4 terms in an asymptotic approximation of x(t), as t→ ∞.

Liouville-Green and WKBJ approximation.

3. (a) For the equation ε2y′′ = q(x)y consider solutions given formally1 as

y = exp

(

1

ε
S0 + S1 + εS2 + ε2S3 + · · ·

)

.

for small ε. Show that the functions {Sn}∞n=0 are determined iteratively by

(S ′

0)
2 = q , 2S ′

0S
′

1 + S ′′

0 = 0 ,

1This means they should satisfy the equation to each order in ε, i.e. as formal power series in ε.
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and

2S ′

0S
′

n + S ′′

n−1 +
n−1
∑

j=1

S ′

jS
′

n−j = 0 .

Find expressions for S0, S1 and S2 in terms of q (taking care over the sign choice in
S0).

(b) Now try to apply the above solution method to the Airy equation y′′ = xy , as
follows: let 2 ε = 1, q(x) = x and find a relation which determines Sn(x) in terms of

the functions {Sj(x)}n−1
j=1 . Show inductively that this defines a sequence of functions

of the form Sj(x) = cjx
3

2
(1−j) for j ≥ 2 and some constant cj . Deduce that Ai might

reasonably be expected to admit an asymptotic expansion of the form3

Ai(x) ∼ Ax−
1

4 exp

(

−2

3
x

3

2

)(

1− 5

48
x−

3

2 +O(
1

x3
)

)

, (x −→ ∞) .

4. Show that, for large positive x , the equation

w′′ − x3w′ + x−2 w = 0

has two independent solutions with asymptotic behaviour

w ∼ 1 + O
(

x−4
)

and w ∼ x−3 exp

(

x4

4

)

(

1 + O
(

x−4
)

)

.

5. (a) Consider the differential equation

z w′′ − z w′ − w = 0 (1)

in a neighbourhood of the point at infinity, z = ∞ . Classify this point.

(b) Show that one solution of (1) is w(z) = zez, and hence find an expression for a
second independent solution as an integral.

(c) Find µ(z) and q(z) such that W (z) = µ(z)−1w(z) satisfies an equation W ′′ −
q(z)W = 0 . Write down expressions for the two independent Liouville–Green so-

lutions of this equation in terms of q(z) . Calculate the first two terms of the expan-

sion in inverse powers of z of
√

q(z) about z = ∞ , and hence determine from the
Liouville–Green solutions the leading–order asymptotic form for w as z −→ ∞ .
Compare these with the two exact solutions obtained previously.

2There are two ways you can think of the procedure of introducing the small parameter ε and then putting

it equal to one. Either ε arises as a small parameter by first rescaling x = µX with µ → +∞, deriving the

asymptotic relations for the {Sj(X)}, and noticing that they are in fact scale invariant so one can rescale

back. Alternatively, just think of it as a device to obtain a system for the {Sj} that is formally completely

equivalent to the original equation - in this case, the asymptotic content arises in checking that the solutions

of the system form an asymptotic sequence, as you are asked to do here.
3You are not expected to prove that this procedure gives a complete asymptotic expansion. The integral

formulation for the Airy functions provides an efficient basis for a rigorous approach to their asymptotics. See

Section 7.6 in Hormander’s “Analysis of Linear Partial Differential Operators I” or the appendix to “Complex

Analysis” by Stein and Shakarchi for some proofs.
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6. The wavefunction ψ obeys the equation

−d
2ψ

dx2
− s(s+ 1)

cosh2x
ψ = E ψ ,

with s > 0 . Use the WKBJ approximation to find approximate values for the
bound-state energies (eigenvalues E for which ψ → 0 as |x| → ∞)

√

(

−E
)

=
√

s
(

s+ 1
)

− n − 1

2
.

What are the allowed values of n? Compare with the exact bound state energies
E = − (s − n)2 , where n = 0 , 1 , 2 , . . . and n < s.

[Hint: You may find the substitution sinh x = z useful, and note that if a, b are
real,

∫ a

−a

√
a2 − z2

b2 + z2
dz = π(

√
1 + b−2a2 − 1) ,

which can be derived via contour integration.]

7. Show that the large eigenvalues of the system

d2w

dx2
=

(

x4 + x2 − λ2
)

w , w(−∞) = w(∞) = 0 ,

are given by

λ ∼ 2
1

3 π

(

Γ

(

1

4

))

−
4

3
(

3n +
3

2

)
2

3

+ O
(

n
1

3

)

,

where n is a positive integer.

8. (∗) Quantum tunneling through a potential barrier in the stationary approach to scat-
tering theory is described by the time-independent Schrödinger equation

− ~
2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

where V ≥ 0 and V → 0 faster than 1/|x| as |x| → ∞. Consider a particle incident

from x = −∞ with an energyE = ~2k2

2m
, and assume thatE < V on an interval (a, b)

and E > V on (−∞, a) and (b,∞). This means that for x→ −∞ the wave function

should approach eikx+re−ikx while for x→ +∞ the wave function should approach
teikx, where the constants r and t are known as the reflection and transmission coef-
ficients of the potential. (The term eikx corresponds to the incident wave, travelling
to the right from x = −∞ in the corresponding time-dependent description.)

Write down Liouville-Green approximations to the wave functions in the three re-
gions (a, b), (−∞, a) and (b,∞), consistent with the set-up just described and indi-
cating clearly which are oscillatory and which are real exponential solutions. Show
using the connection formulae of the WKBJ approximation that the transmission
probability |t|2 is approximately

exp

(

−2

~

∫ b

a

√

2m(V (x)− E) dx

)

,

when the integral is large compared with ~.

[Note: For a careful treatment see Landau and Lifshitz, Quantum Mechanics, 3rd
ed., p.178, or Bender and Orszag p.524.]
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Further examples of Stokes’ phenomenon and recap on asymptotics of integrals.

9. The analytic function f(z) is defined by

f(z) =

∫ z

i∞

exp
(

s2
)

ds .

Use the method of integration by parts to obtain an asymptotic expansion of the form

f(z) ∼ exp
(

z2
)

{

1

2z
+

1

4z3
+

3

8z5
+

15

16z7
+ . . .

}

,

in the sector 0 ≤ arg z ≤ π , including an expression for the remainder after a finite
number of terms and a verification of the asymptotic property.

To deal with the case − π ≤ arg z ≤ 0 , convert f(z) to the form

f(z) =

∫ z

− i∞

exp
(

s2
)

ds − i π
1

2 ,

and, without making detailed calculations, obtain an asymptotic expansion valid in

this domain for
(

f(z) + i π
1

2

)

. Find the Stokes lines for these asymptotic expan-

sions of f as |z| → ∞.

10. (∗) In discussions of the methods of stationary phase and steepest descent, we have
considered the integral

I(z) =

∫ 1

0

exp
(

z t3
)

dt ,

in the case that z = ix is purely imaginary. This question is concerned with the
general case z ∈ C.

(a) In the case that ℜz > 0 show that

I(z) +
Γ
(

4
3

)

z
1

3

∼ ez

3

∞
∑

n=0

Γ
(

n+ 2
3

)

Γ
(

2
3

)

1

zn+1
(†)

as z −→ + ∞ in the sector Arg z ∈ (−π
2
+ δ, π

2
− δ) for small positive δ, and

obtain a similar relation for the sector Arg z ∈ (π
2
+ δ, 3π

2
− δ).

(b) Generalize the application of the method of steepest descent in the notes to de-
velop the asymptotic expansion

I(z) ∼ ez

3

∞
∑

n=0

Γ(n+ 2
3
)

Γ(2
3
)

1

zn+1
+

Γ
(

4
3

)

e
iπ

3

z
1

3

,

as |z| → ∞ in the sector Arg z ∈ (δ, π − δ). Find a similar relation for the sector
Arg z ∈ (π + δ, 2π − δ). Discuss the relation between the different expansions
in regions of overlap. [You may use the complex version of Watson’s lemma; see
Section IV.4 in Stuart’s notes.]
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