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Part II Integrable Systems, Sheet One

Professor Maciej Dunajski, Lent Term 2025

1. Jacobi identity. Assume that (pj , qj) satisfy the Hamilton equations and show that any function
f = f(p, q, t) satisfies

df

dt
=

∂f

∂t
+ {f,H},

where H is the Hamiltonian.

Show that the Jacobi identity

{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0 (1)

holds for Poisson brackets.

Deduce that if functions f1 and f2 which do not explicitly depend on time are first integrals of a
Hamiltonian system then so is f3 = {f1, f2}.

2. Canonical transformations.

• Find the canonical transformation generated by

S =
n
∑

k=1

qkPk.

• Show that the canonical transformations preserve volume in the two–dimensional phase space, i.e.

∂(P,Q)

∂(p, q)
= 1.

[This result also holds in phase spaces of arbitrary dimension.]

• Show that the transformation

Q = cos (β)q − sin (β)p, P = sin (β)q + cos (β)p

is canonical for any constant β ∈ R. Find the corresponding generating function. Is it defined for
all β?

3. Action variables for the Kepler problem. Consider the four–dimensional phase space coordinatised
by

q1 = φ, q2 = r, p1 = pφ, p2 = pr

equipped with a Hamiltonian

H =
pφ

2

2r2
+

pr
2

2
− α

r

where α > 0 is a constant. Use the fact that ∂φH = 0 to show the existence of two first integrals in
involution and deduce that this system is integrable in a sense of the Arnold–Liouville theorem.

Construct the action variables. Express the Hamiltonian in terms of the action variables to show that
the frequencies associated to the corresponding angles are equal.

[Hint: φ and one function of (r, pr) parametrise Mf . Varying φ and fixing the other coordinate gives
one cycle Γφ ⊂ Mf . To find the second action coordinate fix φ (on top of H and pφ).]
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4. Radial harmonic oscillator.

(a) Consider the Hamiltonian system on phase space R
4 defined by H1(q1, q2, p1, p2) =

1

2
(p2

1
+ ω2

1
q2
1
+

p2
2
+ ω2

2
q2
2
) , with ω1, ω2 positive real numbers. Find two first integrals which are in involution and

action-angle variables. Writing the system in terms of these variables, show that the system is
integrable. Find a relation between ω1 and ω2 which ensures that all solutions are periodic in t,
show this relation holds if ω1 = ω2 and find an additional first integral in this case.

(b) Consider the Hamiltonian for motion of a particle of unit mass in a radially symmetric harmonic
potential on the plane

H2(φ, r, pφ, pr) =
p2φ
2r2

+
p2r
2

+
1

2
ω2r2

in polar coordinates. Working in polar coordinates, and using the integral
∫ a

b

1

x

√

(a− x)(x− b)dx = π
(a+ b

2
−
√
ab
)

, 0 < b < a < ∞ ,

find action-angle variables for H2 and show that all solutions are periodic in t.

Comment on the relation with part (a) of the question.

5. Poisson structures. A Poisson on structure on R
2n is an anti–symmetric matrix ωab whose components

depend on the coordinates ξa ∈ R
2n, a = 1, · · · , 2n and such that the Poisson bracket

{f, g} =
2n
∑

a,b=1

ωab(ξ)
∂f

∂ξa
∂g

∂ξb

satisfies the Jacobi identity (1).

Show that
{fg, h} = f{g, h}+ {f, h}g.

Assume that the matrix ω is invertible with W := (ω−1) and show that the antisymmetric matrix Wab(ξ)
satisfies

∂aWbc + ∂cWab + ∂bWca = 0. (2)

[Hint: note that ωab = {ξa, ξb}.] Deduce that if n = 1 then any antisymmetric invertible matrix ω(ξ1, ξ2)
gives rise to a Poisson structure (i.e. show that the Jacobi identity holds automatically in this case).

[In differential geometry the invertible antisymmetric matrix W which satisfies (2) is called a symplectic
structure. We have therefore deduced that symplectic structures are special cases of Poisson structures.]

6. KdV and its 1–soliton solution Verify that the equation

1

v
Ψt +Ψx + βΨxxx + αΨΨx = 0.

where Ψ = Ψ(x, t) and (v, β, α) are non–zero constants is equivalent to the KdV equation

ut − 6uux + uxxx = 0, u = u(x, t) (3)

after a suitable change of dependent and independent variables.

Assume that a solution of the KdV equation (3) is of the form

u(x, t) = f(ξ), where ξ = x− ct

for some constant c. Show that the function f(ξ) satisfies the ODE

1

2
(f ′)2 = f3 +

1

2
cf2 + αf + β

where (α, β) are arbitrary constants. Assume that f and its first two derivatives tend to zero as |ξ| → ∞
and solve the ODE to construct the one–soliton solution to the KdV equation.
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7. Sine–Gordon soliton from Backlund transformations. The Sine–Gordon equation is

φxx − φtt = sin (φ), φ = φ(x, t).

Set τ = (x+ t)/2, ρ = (x− t)/2 and consider the Bäcklund transformations

∂ρ(φ1 − φ0) = 2b sin
(φ1 + φ0

2

)

, ∂τ (φ1 + φ0) = 2b−1 sin
(φ1 − φ0

2

)

,

where b = const and φ0, φ1 are functions of (τ, ρ). Take φ0 = 0 and construct the 1-soliton (kink)
solution φ1. Draw the graph of φ1(x, t) for a fixed value of t. What happens when t varies?

8. Backlünd for Liouville equation. Let v be any solution of the wave equation in double-null coordi-
nates: vxt = 0. Show that the two equations:

ux + vx =
√
2 exp

(

u− v

2

)

, ut − vt =
√
2 exp

(

u+ v

2

)

, (4)

are compatible iff u satisfies Liouville’s equation uxt = eu. These equations constitute a Bäcklund
transformation. By considering the most general form of v = v(x, t), show that:

u(x, t) = 2 log

(

−
√
2

∫ x
exp[−f(ξ)]dξ +

∫ t
exp[g(τ)]dτ

)

+ g(t)− f(x). (5)

9. Miura transformation. Let v = v(x, t) satisfy the modified KdV equation

vt − 6v2vx + vxxx = 0.

Show that the function u(x, t) given by
u = v2 + vx (6)

satisfy the KdV equation. Is it true that any solution u to the KdV equation gives rise, via (6), to a
solution of the modified KdV equation?

Books. The course follows the first four chapters of
Dunajski, M. (2024) Solitons, Instantons and Twistors, 2nd edition, OUP.
Other interesting books are

• Hamiltonian Systems.

Arnold, V. I. Mathematical Methods of Classical Mechanics. (This uses a language of differential forms
but has the best possible exposition of the Arnold–Liouville theorem. Chapter 10 is most relevant).

Schuster, H. G. Deterministic Chaos: An Introduction. (A popular introduction to KAM theorem and
ergodicity with some mention of integrable systems).

• Solitons and Inverse Scattering.

Novikov S., Manakov S. V., Pitaevskii L. P., Zaharov V. E., Theory of Solitons. (The lectures follow
Chapter 1 of this book in the treatment of the KdV equation and solitons).

Drazin, P. G., Johnson, R.S. Solitons: an introduction. (A very readable text. Chapters 3, 4, 5 are most
relevant).

• Lie symmetries, Painleve equations.

Hydon P. E. Symmetry Methods for Differential Equations: A Beginner’s Guide. (Elementary and very
easy to follow)

Olver, P. J. Applications of Lie groups to differential equations.

Fokas, A.S. et. al. Painleve transcendents. The Riemann-Hilbert approach.
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