Example Sheet 2.
David Stuart
Part II: Integrable systems
Michaelmas 2019

2.1. Let \(L(t) \) and \(A(t) \) be \(n \times n \) matrices depending differentiably on \(t \in \mathbb{R} \), and such that

\[
\frac{dL}{dt} = [L, A].
\]

Show, without considering the eigenvalues/vectors of \(L \), that \(\text{tr}(L^p) \), \(p \in \mathbb{N} \), does not depend on \(t \).

2.2. Show that if in (1) the matrix \(A \) is skew-symmetric \((A^T = -A)\) and \(L \) is symmetric then both sides of the equation are symmetric.

2.3. Write down the Hamiltonian equations for the Toda Hamiltonian for \(N \) particles moving in one dimension, \(H = \frac{1}{2} \sum_{j=1}^{N} p_j^2 + \sum_{j=1}^{N-1} \exp(q_j - q_{j+1}) \) and show that with the definitions \(a_j = \frac{1}{2} \exp((q_j - q_{j+1})/2) \) and \(b_j = -\frac{1}{2} p_j \) they are equivalent to

\[
\dot{a}_j = a_j(b_{j+1} - b_j), \quad \dot{b}_j = 2(a_j^2 - a_j^2).
\]

(Use the convention that \(q_0 = -\infty, e^{q_0} = 0, q_{N+1} = +\infty, e^{-q_{N+1}} = 0. \))

2.4. Recall the Toda problem with \(N = 2 \) can be written as the Lax pair \(\dot{L} = [B, L] \) with

\[
L = \begin{pmatrix} b_1 & a_1 \\ a_1 & b_2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & a_1 \\ -a_1 & 0 \end{pmatrix}.
\]

Express the eigenvalues of \(L \) in terms of the total momentum \(p_1 + p_2 \) and the energy \(H \), check they are in involution. Obtain the general solution to the system.

2.5. Extend the Lax pair formulation of the Toda problem to general \(N \), by considering the tri-diagonal\(^1\) \(N \times N \) matrices whose diagonal elements are \(L_{jj} = b_j \) and \(B_{jj} = 0 \) for \(j = 1, \ldots, N \), and whose near diagonal elements are \(L_{j,j+1} = L_{j+1,j} = a_j \) and \(B_{j,j+1} = -B_{j+1,j} = a_j \) for \(j = 1, \ldots, N-1 \). Show that the equations (2) are equivalent to \(\dot{L} = [B, L] \). For the case \(N = 3 \) deduce that \(F_1 = \lambda_1 + \lambda_2 + \lambda_3 \), \(F_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \) and \(F_3 = \lambda_1 \lambda_2 \lambda_3 \) are all 1st integrals (where \(\lambda_j \) are the eigenvalues of \(L \), which you may assume to be real and distinct). Calculate \(F_1, F_2, F_3 \) in terms of \(a_1, a_2, b_1, b_2, b_3 \) and hence show that \(F_1, F_2, F_3 \) are in involution. * Prove the eigenvalues of \(L \) are real and distinct.

2.6. Consider a family of Hermitian \(N \times N \) matrices \(L(t) \) obeying

\[
L(t) = U(t)L(0)U(t)^\dagger
\]

where \(U(t) \) is unitary. Show that \(L(t) \) and \(L(0) \) have the same eigenvalues. Assuming differentiability, show that there exists a skew-Hermitian matrix \(A \) (i.e., a matrix obeying \(A = -A^\dagger \)) such that \(U_t = -AU \) and \(L_t = [L, A] \).

\(^1\)A tri-diagonal matrix is one whose only nonzero elements are either on the diagonal or nearest neighbour to the diagonal.

Please send any corrections to dmas2@cam.ac.uk
Conversely, suppose L satisfies $L_t = [L, A]$ for some skew-Hermitian A. Let $U(t)$ be the solution of $U_t = -AU$, $U(0) = I$. Show that $U(t)$ is unitary. By considering $\frac{d}{dt} U(t)^\dagger L(t) U(t)$ or otherwise, show that $L(t) = U(t) L(0) U(t)^\dagger$.

Extend the preceding results to the following situation. A complex inner product on a vector space X is a map $u, v \mapsto \langle u, v \rangle \in \mathbb{C}$ which is linear in v and obeys $\langle u, v \rangle = \langle v, u \rangle$ for all vectors u, v in X, and $|\langle v, v \rangle| = \langle v, v \rangle > 0$ for nonzero vectors v, making X into a normed space. An operator is a continuous linear map $X \to X$. An operator is a continuous linear map $O : X \to X$, and its adjoint O^\dagger is defined by $\langle O^\dagger u, v \rangle = \langle u, Ov \rangle$. If $O^\dagger = O$ (resp. $O^\dagger = -O$) it is called self-adjoint (resp. skew-adjoint). Now replace "(skew)-Hermitian matrix" by "(skew)-adjoint operator" in the above question, and show that the conclusions still hold. You may assume all operators depend smoothly on t and that the equation $U_t = -AU$ does indeed have a smooth solution.

2.7. Let $L = -\frac{d^2}{dx^2} + u(x)$ be the one dimensional Schrödinger operator with potential u, assumed to decay rapidly at infinity. Show that if $L\psi = \lambda\psi$ and $L\psi' = \lambda\psi''$ then the Wronskian $W(\psi, \psi') \equiv \psi\psi_x' - \psi'\psi_x$ is constant. Using this fact establish the following results concerning the discrete and continuous parts of the spectrum of L respectively:

(i) Show that if ψ and ψ' are bound states corresponding to the same discrete eigenvalue then $\psi \propto \psi'$. Deduce that the discrete eigenvalues are non-degenerate, i.e. each discrete eigenvalue corresponds to exactly one bound state.

(ii) Show that the reflection and transmission coefficients obey $|R(k)|^2 + |T(k)|^2 = 1$ for all k. \textit{[Hint:} if $L\Psi = k^2 \Phi$ then $L^\dagger \Phi = k^2 \Psi$, also, the bar denoting complex conjugation.\textit{]}

2.8. For u a real function, define the linear operators

$$L = -\frac{d^2}{dx^2} + u(x,t), \quad A = 4\frac{d^3}{dx^3} - 3u\frac{d}{dx} - 3\frac{d}{dx}u.$$

Show that the KdV equation is equivalent to Lax’s equation $L_t = [L, A]$.

Show that L is self-adjoint and A is skew-adjoint: $\langle \varphi, L\psi \rangle = \langle L\varphi, \psi \rangle, \langle \varphi, A\psi \rangle = -\langle A\varphi, \psi \rangle$ for any smooth, rapidly decaying functions ψ and φ. If ψ is a real function with $|\psi(t)| = 1$ and $\dot{\psi}(t) = \psi_t(t) + A\psi(t)$, show that ψ and $\dot{\psi}$ are orthogonal, i.e. $\langle \psi, \dot{\psi} \rangle = 0$. Conclude that if u satisfies the KdV equation and ψ is a bound state for L then $\psi_t + A\psi = 0$. \textit{[Hint:} use question 2.7(i),\textit{]} and obtain the time dependence of the discrete part of the scattering data associated to the potential u.

2.9. Recall from lectures that if $A = \partial_x + m \tanh mx$ and $A^\dagger = -\partial_x + m \tanh mx$, then

$$-\frac{d^2}{dx^2} + m^2 = AA^\dagger \quad \text{and} \quad -\frac{d^2}{dx^2} + m^2 - 2m^2 \text{sech}^2 mx = A^\dagger A,$$

from which we found the scattering data for the potential $-2m^2 \text{sech}^2 mx$ was $R(k) = 0$ and $\chi_1^2 = -m^2$ and $c_1 = \sqrt{2m}$. Now by considering $B = \partial_x + 2m \tanh mx$ and $B^\dagger = -\partial_x + 2m \tanh mx$, and computing BB^\dagger and $B^\dagger B$, find the scattering data for the potential $-6m^2 \text{sech}^2 mx$. \textit{[Hint:} consider $B^\dagger A^\dagger e^{ikx} = (-k^2 - 3imk \tanh mx +
\(2m^2 - 3m^2 \text{sech}^2 mx \) \(e^{ikx} \) to find the reflection coefficient, and argue similarly to the case \(-2m^2 \text{sech}^2 mx \) treated in lectures for the bound state scattering data.

(*) Verify that solving Gelfand-Levitan-Marcenko equation for \(K = K(x, y) \) and defining \(u(x) = -2 \frac{d}{dx} K(x, x) \) leads back to \(u = -6m^2 \text{sech}^2 mx \).

2.10. The \(N = 2 \) soliton solution to the KdV is given by \((\chi_1 > \chi_2) \)

\[
 u(x, t) = -8 \left[\frac{(\chi_1^2 e^{\eta_1} + \chi_2^2 e^{\eta_2}) + 2(\chi_1 - \chi_2)^2 e^{\eta_1+\eta_2} + \alpha_{12}(\chi_1^2 e^{2\eta_1+2\eta_2} + \chi_2^2 e^{2\eta_1+\eta_2})}{(1 + e^{\eta_1} + e^{\eta_2} + \alpha_{12} e^{\eta_1+\eta_2})^2} \right]
\]

where \(\eta_i(x, t) = 2\chi_i x - 8\chi_i^3 t + \beta_i \) for \(i = 1, 2 \) and \(\alpha_{12} = (\chi_1 - \chi_2)^2(\chi_1 + \chi_2)^{-2} \). By setting \(\eta_1 = \text{const} \) and taking the limit \(t \to \infty \) show that in a frame of reference travelling at speed \(4\chi_1^2 \) the 2-soliton reduces to a one soliton solution

\[
 u(x, t) = -2\chi_1^2 \text{sech}^2 [\chi_1(x - 4\chi_1^2 t) + \phi_\infty]
\]

where you should determine the constant \(\phi_\infty \). By instead taking the limit \(t \to -\infty \), calculate the phase shift \(\Delta \phi = \phi_\infty - \phi_{-\infty} \) induced by the soliton interaction.