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Part II Integrable Systems, Sheet Two

Professor Maciej Dunajski, Lent Term 2025

1. Lax pair. Consider a one-parameter family of self–adjoint operators L(t) in some complex inner product
space such that

L(t) = U(t)L(0)U(t)−1

where U(t) is a unitary operator, i.e. U(t)U(t)† = 1 where U † is the adjoint of U .

Show that L(t) and L(0) have the same eigenvalues. Show that there exist an anti-self-adjoint operator
A such that Ut = −AU and

Lt = [L,A].

2. Lax representation of ODEs. Let L(t), A(t) be complex valued n by n matrices such that

L̇ = [L,A].

Deduce that Trace(Lp), p ∈ Z does not depend on t.

[It is possible to show that systems integrable in a sense of Arnold–Liouville’s theorem can be put in
this form, with the Poisson commuting first integrals given by traces of powers of L].

Assume that

L = (Φ1 + iΦ2) + 2Φ3λ− (Φ1 − iΦ2)λ
2,

A = −iΦ3 + i(Φ1 − iΦ2)λ

where λ is a parameter and find the system of ODEs satisfied by matrices Φj(t), j = 1, 2, 3.

[ The Lax relations should hold for any value of the parameter λ. The system you are asked to find
known as Nahm’s equations. It underlies the construction of non–abelian magnetic monopoles.]

Now take Φj(t) = −iσjwj(t) (no summation) where σj are matrices

σ1 =
1

2

(

0 1
1 0

)

, σ2 =
1

2

(

0 −i
i 0

)

, σ3 =
1

2

(

1 0
0 −1

)

which satisfy [σj , σk] = i
∑3

k=1
εjklσl. Show that the system reduces to the Euler equations

ẇ1 = w2w3, ẇ2 = w1w3, ẇ3 = w1w2.

Use Trace(Lp) to construct first integrals of this system.

3. Toda equation. Write down the Hamiltonian equations for the Toda Hamiltonian for N particles
moving in one dimension, H = 1

2

∑N

j=1
p2j +

∑N−1

j=1
exp(qj − qj+1) and show that with the definitions

aj =
1

2
exp[(qj − qj+1)/2] and bj = − 1

2
pj they imply the Toda equations

ȧj = aj(bj+1 − bj) , ḃj = 2(a2j − a2j−1) . (1)

(Use the convention that q0 = −∞, eq0 = 0, qN+1 = +∞, e−qN+1 = 0.)

Verify that the Toda problem with N = 2 can be written as the Lax pair L̇ = [B,L] with

L =

(

b1 a1
a1 b2

)

B =

(

0 a1
−a1 0

)

.

Express the eigenvalues of L in terms of the total momentum p1 + p2 and the energy H, check they are
in involution.

Obtain the general solution to the system.
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4. Lax pair for KdV. Show that the The KdV equation is equivalent to

Lt = [L,A]

where the Lax operators are

L = −
d2

dx2
+ u, A = 4

d3

dx3
− 3

(

u
d

dx
+

d

dx
u
)

, u = u(x, t).

5. Review of IB quantum mechanics Let L = − d2

dx2 +u(x) be the one dimensional Schrödinger operator
with potential u, assumed to decay rapidly at infinity. Show that if Lψ = λψ and Lψ′ = λψ′ then the
Wronskian W (ψ,ψ′) ≡ ψψ′

x − ψ′ψx is constant.

Show that if ψ and ψ′ are bound states corresponding to the same discrete eigenvalue then ψ ∝ ψ′.
Deduce that the discrete eigenvalues are non-degenerate, i.e. each discrete eigenvalue corresponds to
exactly one bound state.

6. Evolution of scattering data. Referring to the operators L,A defining the Lax structure of KdV
in Q4, show that L is selfadjoint and A is skew-adjoint: 〈ϕ,Lψ〉 = 〈Lϕ,ψ〉, 〈ϕ,Aψ〉 = −〈Aϕ,ψ〉 for
any smooth, rapidly decaying functions ψ and ϕ. If ψ is a real function with ‖ψ(t)‖ = 1 for all t and
ψ̃(t) = ψt(t) +Aψ(t), show that ψ and ψ̃ are orthogonal, i.e. 〈ψ̃, ψ〉 = 0. Conclude that if u satisfies the
KdV equation and ψ is a bound state for L then ψt + Aψ = 0 and obtain the time dependence of the
discrete part of the scattering (bn, χn) data associated to the potential u. [Hint : use question Q5. Take
the definition of bm to be

φ(x) ≈ bne
−χnx (x→ +∞)

where En = −χ2
n is the nth energy level. ]

7. 2–soliton solution. Assume that the scattering data consists of two energy levels E1 = −χ2
1, E2 = −χ2

2

where χ1 > χ2 and a vanishing reflection coefficient. Solve the Gelfand–Levitan–Marchenko equation to
find the 2-soliton solution.

[Follow the derivation of the 1–soliton in the Notes but try not to look at the N–soliton unless you really
get stuck.]

8. Integral equation. Let Lψ = k2ψ where L = −∂2x + u. Consider ψ of the form

ψ(x) = eikx +

∫ ∞

x

K(x, z)eikzdz

where K(x, z), ∂zK(x, z) → 0 as z → ∞ for any fixed x. Use integration by parts to show

ψ = eikx
(

1 +
iK̂

k
−
K̂z

k2

)

−
1

k2

∫ ∞

x

Kzze
ikzdz,

where K̂ = K(x, x) and K̂z = (∂zK)|z=x. Deduce that the Schrödinger equation is satisfied if

u(x) = −2(K̂x + K̂z), and

Kxx −Kzz − uK = 0 for z > x.

9. Initial data for KdV solitons. Recall from lectures that if A = ∂x + χ tanhχx and A† = −∂x +
χ tanhχx , then

−∂2x + χ2 = AA† and − ∂2x + χ2 − 2χ2sech2χx = A†A , (2)

from which we found the bound state for the potential −2χ2sech2χx with energy E1 = −χ2. Now by
considering B = ∂x + 2χ tanhχx and B† = −∂x + 2χ tanhχx , and computing BB† and B†B, find the
bound states for the potential −6χ2sech2χx and their energy levels.
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10. First integrals for KdV. Consider the Riccati equation

dS

dx
− 2ikS + S2 = u.

for the first integrals of KdV. Assume that

S =

∞
∑

n=1

Sn(x)

(2ik)
n

and find the recursion relations

S1(x, t) = −u(x, t), Sn+1 =
dSn

dx
+

n−1
∑

m=1

SmSn−m.

Solve the first few relations to show that

S2 = −
∂u

∂x
, S3 = −

∂2u

∂x2
+ u2, S4 = −

∂3u

∂x3
+ 2

∂

∂x
u2.

and find S5. Use the KdV equation to verify directly that

d

dt

∫

R

S3dx = 0,
d

dt

∫

R

S5dx = 0.
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