Principles of Quantum Mechanics - Problems 2

Please email me with any comments about these problems, particularly if you spot an error.

1. Let \(n \) be the unit vector in the direction with polar coordinates \((\theta, \phi)\). Write down the matrix \(n \cdot \sigma \) and find its eigenvectors. Hence show that the state of a spin-\(\frac{1}{2} \) particle in which a measurement of the component of spin along \(n \) is certain to yield \(\hbar/2 \) is

\[
|\uparrow_n\rangle = \sin \frac{\theta}{2} e^{i\phi/2} |\downarrow\rangle + \cos \frac{\theta}{2} e^{-i\phi/2} |\uparrow\rangle.
\]

where \(|\uparrow\rangle, |\downarrow\rangle\) are the usual eigenstates of \(S_z \). Obtain the corresponding expression for \(|\downarrow_n\rangle\). Explain why each of the coefficients in (⋆) has modulus \(1/\sqrt{2} \) when \(\theta = \pi/2 \), and why \(\langle \uparrow | \uparrow_n \rangle = 0 \) at \(\theta = \pi \).

2. Write down the 3 \(\times \) 3 matrix that represents \(S_x \) for a spin-1 system in the basis in which \(S_z = \text{diag}(\hbar, 0, -\hbar) \).

An unpolarized beam of spin-1 particles enters a Stern–Gerlach filter that passes only particles with \(S_z = \hbar \). On exiting this filter, the beam enters a second filter that passes only particles with \(S_x = \hbar \) and then finally it encounters a filter that passes only particles with \(S_z = -\hbar \). What fraction of the initial particles make it right through?

3. Consider a \(d = 1 \) harmonic oscillator of mass \(m \) and frequency \(\omega \), with raising and lowering operators \(A^\dagger \) and \(A \). Show that the translation operator \(U(a) \) may be written as

\[
U(a) = e^{-\frac{1}{2} \gamma^2} e^{\gamma A^\dagger} e^{-\gamma A} \quad \text{where} \quad \gamma = \sqrt{a} \frac{\sqrt{m} \omega}{2\hbar}.
\]

Deduce that if \(\psi_n(x) \) are the normalised position space wavefunctions for states with energies \(\hbar \omega(n + \frac{1}{2}) \), then

\[
\psi_0(x - a) = e^{-\frac{1}{2} \gamma^2} \sum_{n=0}^{\infty} \frac{(-i\gamma)^n}{\sqrt{n!}} \psi_n(x).
\]

[Recall that \([A, e^B] = [A, B] e^B \) and \(e^A e^B = e^{A+B} e^{1/2[A,B]} \) provided \([A, B] \) commutes with \(A \) and \(B \).]

4. Show that \([L^2, X] = i\hbar (X \times L - L \times X) \) and that \(L \cdot X = 0 \), where \(L^2 \equiv L \cdot L \) is the total orbital angular momentum operator. Use these results to show that

\[
[L^2, [L^2, X]] = 2\hbar^2 (L^2 X + X L^2).
\]

By considering the matrix elements of this equation, show that

\[
((\beta - \beta')^2 - 2(\beta + \beta')) \langle \ell', m'|X|\ell, m \rangle = 0
\]
where \(\beta = \ell(\ell + 1) \), \(\beta' = \ell'(\ell' + 1) \) and \(|\ell, m\rangle \), \(|\ell', m'\rangle \) are orbital angular momentum eigenstates.

When hydrogen is immersed in a bath of radiation, transitions between the electron energy levels \(|n, \ell, m\rangle \) and \(|n', \ell', m'\rangle \) proceed at a rate proportional to \(|\langle n', \ell', m'|X|n, \ell, m\rangle|^2 \). Show that this transition rate vanishes unless \(|\ell - \ell'| = 1 \) or \(\ell' = \ell = 0 \). By considering the parity operator, show that the transition rate also vanishes if \(\ell = \ell' = 0 \). By constructing an appropriate commutator, show also that allowed transitions also have \(|m' - m| \leq 1 \). [This is a special case of the Wigner–Eckart theorem.]

5. Consider a free particle with mass \(m \). Show that energy eigenstates with definite total angular momentum obey \(H\ell|E, \ell\rangle = E|E, \ell\rangle \) where

\[
H\ell = \frac{1}{2m} \left(\mathbf{p}^2 + \frac{\ell(\ell + 1)\hbar^2}{|\mathbf{X}|^2} \right)
\]

and \(\mathbf{p}_r := (\mathbf{X} \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{X})/2 \). Now let

\[
A\ell = \frac{1}{\sqrt{2m}} \left(i\mathbf{p}_r - \frac{(\ell + 1)\hbar}{|\mathbf{X}|} \right)
\]

Find \([A\ell, A^\dagger\ell]\) in terms of the \(H\ell \). What is the state \(A\ell|E, \ell\rangle \)? Show that for \(E > 0 \) there is no upper bound on \(\ell \) and interpret this result physically.

6. Consider the isotropic harmonic oscillator in three dimensions, with potential \(V(r) = V_0 + \frac{1}{2}m\omega^2r^2 \). Write down the allowed energy eigenvalues. What is the degeneracy of the \(n \)th level?

In a simple model of the atomic nucleus, each nucleon (proton or neutron, each with spin-\(\frac{1}{2} \)) moves in the harmonic potential \(V(r) \) above, interpreted as being created by the other nuclei. Explain why the nuclear isotopes \(^4\)He, \(^{16}\)O and \(^{40}\)Ca are especially stable. [Helium, oxygen and calcium have atomic numbers \(Z = 2, 8 \) and 20, respectively.]

7. A Fermi oscillator has Hamiltonian \(H = B^\dagger B \) where

\[
B^\dagger B + BB^\dagger = 1 \quad \text{(the anticommutator)}
\]

and \(B^2 = 0 \). Find the eigenvalues of \(H \). If \(|0\rangle \) is a state obeying \(H|0\rangle = 0 \) and \(\langle 0|0\rangle = 1 \), find \(B|0\rangle \) and \(B^\dagger|0\rangle \). Explain the connection between the spectrum of \(B^\dagger B \) and the Pauli exclusion principle.