Applications of Quantum Mechanics: Example Sheet 4

David Tong, March 2019

1. The semi-classical equations of motion for an electron of charge $-e$ and energy $E(k)$ moving in a magnetic field \mathbf{B} are

$$\hbar \frac{dk}{dt} = -e \mathbf{v} \times \mathbf{B} \quad \text{and} \quad \mathbf{v} = \frac{1}{\hbar} \frac{\partial E}{\partial k}$$

Show that, in momentum space, the electrons orbit the Fermi surface $E(k_F)$ in a plane perpendicular to \mathbf{B}. Show that the orbit of the electron in position space, projected onto the plane perpendicular to \mathbf{B}, traces out the perimeter of a cross-section of the Fermi surface. [Hint: Consider the evolution of the position $\mathbf{r}_\perp = \mathbf{r} - (\mathbf{B} \cdot \mathbf{r}) \mathbf{B}$, perpendicular to the magnetic field.]

A free electron has $E(k) = \frac{\hbar^2 k^2}{2m}$. Use the results above to show that, for any value of $k \cdot \mathbf{B}$, the electron orbits the Fermi surface with cyclotron frequency $\omega_B = \frac{eB}{m}$. Show that the time taken to orbit the Fermi surface can be written as

$$T = \frac{2\pi}{\omega_B} = \frac{\hbar^2}{eB} \frac{\partial A(E)}{\partial E} \bigg|_{kB}$$

where $A(E)$ is the cross-sectional area of the Fermi surface with Fermi energy E.

[An Aside: This formula is important because it holds for Fermi surfaces of any shape.]

2. A one-dimensional crystal comprises a chain of atoms of mass m equally spaced by a distance a when in equilibrium. The forces between the atoms are such that the effective spring constants are alternately λ and $\alpha \lambda$. Show that the dispersion relation for phonons has the form

$$\omega_{\pm}(k)^2 = \frac{\lambda}{m} \left[(1 + \alpha) \pm \sqrt{1 + 2\alpha \cos 2ka + \alpha^2}\right]$$

where the wavenumber k satisfies $-\pi/2a \leq k \leq \pi/2a$. What is the speed of sound in this crystal?
3. The Schrödinger equation for a particle of mass m and charge q in an electromagnetic field is

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \left(\nabla - \frac{iq}{\hbar} A \right)^2 \psi + q\phi \psi$$

Under a gauge transformation,

$$\phi \rightarrow \phi - \frac{\partial \alpha}{\partial t}, \quad A \rightarrow A + \nabla \alpha.$$

Show that, with a suitable transformation of ψ, the Schrödinger equation transforms into itself. Show that the probability density $|\psi|^2$ is gauge invariant. Show that the mechanical momentum $\pi = -i\hbar \nabla - qA$ is gauge invariant. What is the physical interpretation of the mechanical momentum?

4. A particle of charge q moving in a magnetic field $B = \nabla \times A = (0, 0, B)$ is described by the Hamiltonian

$$H = \frac{1}{2m} (p - qA)^2$$

where p is the canonical momentum. Show that the mechanical momentum $\pi = p - qA$ obeys

$$[\pi_x, \pi_y] = i q \hbar B$$

Define

$$a = \frac{1}{\sqrt{2q\hbar B}} (\pi_x + i\pi_y) \quad \text{and} \quad a^\dagger = \frac{1}{\sqrt{2q\hbar B}} (\pi_x - i\pi_y)$$

What commutation relations do a and a^\dagger obey? Write the Hamiltonian in terms of a and a^\dagger and hence solve for the spectrum.

5a. Symmetric gauge is defined by $A = \frac{B}{2} (-y, x, 0)$. Confirm that this gives the magnetic field $B = (0, 0, B)$. Show that the Hamiltonian can be written as

$$H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{qB}{2m} L_z + \frac{q^2B^2}{8m} (x^2 + y^2)$$

where L_z is the component of the angular momentum parallel to B.

\[2\]
b. Show that the operator \(a \), defined in Question 4, takes the form

\[
a = -i\sqrt{2} \left(l_B \frac{\partial}{\partial w} + \frac{w}{4l_B} \right)
\]

where \(l_B = \sqrt{\hbar/qB} \) is the magnetic length and \(w = x + iy \) is a complex coordinate on the plane, with \(\partial_w = \frac{1}{2}(\partial_x + i\partial_y) \) so that \(\partial_w \omega = 0 \) and \(\partial_{\bar{w}} \bar{\omega} = 1 \). Hence show that the state

\[
\psi(w) = f(w)e^{-|w|^2/4l_B^2}
\]
sits in the lowest Landau level for any holomorphic function \(f(w) \).

6. In the presence of a magnetic field \(\mathbf{B} = (0, 0, B) \), a particle of charge \(q \) moves in the \((x, y)\)-plane on the trajectory,

\[
x(t) = X + R \sin(\omega_B t) \quad \text{and} \quad y(t) = Y + R \cos(\omega_B t)
\]

with \(\omega_B = qB/m \). Working in symmetric gauge \(\mathbf{A} = \frac{B}{2} (-y, x, 0) \), show that the centre of mass coordinates can be re-expressed as

\[
X = \frac{x}{2} + \frac{p_y}{m\omega_B} \quad \text{and} \quad Y = \frac{y}{2} - \frac{p_x}{m\omega_B}
\]

Viewed as quantum operators in the Heisenberg representation, show that both \(X \) and \(Y \) do not change in time. Show that

\[
[X, Y] = -il_B^2
\]

where \(l_B^2 = \hbar/qB \) is the magnetic length. Use the Heisenberg uncertainty relation for \(X \) and \(Y \) to estimate the number of states \(\mathcal{N} \) that can sit in a region of area \(A \).

7. A particle of charge \(e \) and spin \(\frac{1}{2} \) with g-factor \(g = 2 \) moves in the \((x, y)\)-plane in the presence of a magnetic field of the form \(\mathbf{B} = (0, 0, B) \). Show that the Hamiltonian can be written as

\[
H = \frac{1}{2m} Q^2 \quad \text{with} \quad Q = (\pi_x \sigma_x + \pi_y \sigma_y)
\]

where \(\sigma \) are the Pauli matrices and \(\pi \) is the mechanical momentum defined in earlier questions.

Confirm that \(Q \) is Hermitian. Show that zero energy states are annihilated by \(Q \). Show that \(|\psi\rangle \) and \(Q|\psi\rangle \) are degenerate and hence deduce that the lowest Landau level
contains half the states of the higher Landau levels. What is the physical interpretation of this? (Hint: consider the effect of Zeeman splitting on Landau levels.)

Working in Landau gauge, \(A = (0, Bx, 0) \) with \(B > 0 \), show that zero energy states have spin up and take the form

\[\psi = \begin{pmatrix} f(w) e^{-x^2/2l_B^2} \\ 0 \end{pmatrix} \]

with \(w = x + i y \) and \(l_B^2 = \hbar q B \). Show by explicit calculation that there are no zero energy spin down states.

8*. Near the Dirac point, an electron in graphene is described by the Hamiltonian

\[H = v_F Q \]

with \(v_F \) the Fermi velocity and \(Q \) the operator defined in Question 5. Working in Landau gauge \(A = (0, Bx, 0) \), show that the Landau level spectrum is given by

\[E = \pm v_F \sqrt{2\hbar q B} \sqrt{n} \quad n = 0, 1, 2, \ldots \]