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Mathematical Tripos Part II Christopher Thomas

STATISTICAL PHYSICS Examples 1 Lent 2024

1. Establish Stirling’s formula as follows. Start with

n! =

∫ ∞

0

e−xxn dx ≡
∫ ∞

0

e−F (x) dx .

Let the minimum of F be at x0. Approximate F (x) by F (x0) + F ′′(x0)(x − x0)
2/2.

(One further approximation is needed.) Hence obtain n! ∼
√
2πnnne−n, and the

statistical physics approximation lnn! ∼ n lnn− n.

2. A cubic box is described by a three-dimensional infinite square well with 0 ≤ x, y, z ≤ a
and corresponding single-particle energy eigenstates

E =
~
2π2

2ma2
(p2 + q2 + r2)

where p, q, r are positive integers. Assume that the box contains N non-interacting
distinguishable particles of mass m. Let G(E) be the number of states with energy
less than E. For E ≫ ~

2π2/(2ma2) show that G(E) ≈ cEαN for some positive
constants c and α. Determine the value of α.

[Hint: a microstate can be parameterized by 3N positive integers and states with
energy less than E are those for which these integers lie inside some sphere in the
corresponding 3N dimensional space. How does the volume of this sphere depend on
N?]

3. Consider two systems, for which the total number of states with energy within a small
range δE around E is given by the functions Ω1(E) and Ω2(E) with Ωi(E) = ciE

αiNi

where N1, N2 are the number of particles in each system and ci, αi are positive
constants. Using the approximation Si(E) ≈ kB ln Ωi(E) consider the probability
that, in equilibrium, the first system has energy E1 and the second has energy E−E1

(where E is the total energy):

p(E1) =
Ω1(E1)Ω2(E − E1)

Ω(E)
=

1

Ω(E)
exp

[

S1(E1)

kB
+

S2(E − E1)

kB

]

.

(i) Determine the value E∗
1 which maximizes this probability. (ii) By expanding the

exponent to second order around E∗
1 show that p(E1) is negligible for |E1 − E∗

1 | ≫
E/

√
N (where N is the total number of particles and N1, N2 ∼ N).

4. (a) Show that two coupled systems in the microcanonical ensemble, each with heat
capacity C, maximize their entropy at equal temperature only if C is positive.

(b) In the canonical ensemble, show that the fluctuations in energy,
(∆E)2 = 〈E2〉 − 〈E〉2, are proportional to the heat capacity.

(c) Show that in the canonical ensemble the Gibbs entropy can be written as
S = kB

∂
∂T

(T lnZ).
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5. Gas in an insulated container of fixed volume V is divided into two parts of volumes
V1 and V2 by a thin, movable barrier (i.e. energy can pass through the barrier). Show
using the first law in the form

dS =
dE

T
+

p dV

T

that the temperatures and pressures in the two parts are equal in equilibrium.

6. A system consists of N spin-1
2
particles with fixed positions. Each particle can be in

one of two quantum states: spin “up” or “down”, labelled by sz ∈ {1
2
,−1

2
}. There is

a magnetic field of strength B in the z-direction so the energy of a particle is −µBsz
where µ is a constant.

(a)(i) How many states are there with N↑ spin “up” particles and N↓ = N − N↑

spin “down” particles? Express the energy of such a state as a function of N↑ and
hence calculate the Boltzmann entropy S(E), expressing your answer in terms of N↑.
When N,N↑ and N↓ are all large use Stirling’s approximation n! ∼

√
2πnnne−n to

show that

S(E) ≈ −kB

[

(N −N↑) ln

(

N −N↑

N

)

+N↑ ln

(

N↑

N

)]

.

Plot S as a function of E.

(ii) Calculate the temperature T as a function of E and plot 1
T

against E. What
happens in the limits T → 0 and T → ∞? Show that the temperature is negative

for E > 0.

[Negative temperature occurs if Ω decreases with E, which is the case here for E > 0.
For most systems, kinetic energy ensures that Ω always increases with E, so negative
temperatures do not usually occur.]

(b) Now consider this system in the canonical ensemble. Show that the partition
function is

Z = 2N coshN

(

βµB

2

)

.

Find the average energy E and entropy S. Show that your results for E(T ) and S(T )
agree with the microcanonical calculations of part (a).

(c) The magnetisation of the system, is defined by M = µ(N↑ −N↓)/2. Compute M
as a function of (T,B). The magnetic susceptibility is defined as χ ≡ (∂M/∂B)T .
Show that, at high temperature, the system obeys Curie’s Law: χ ∼ 1

T
.
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7. * Consider a system of N interacting spins. At low temperatures, the interactions
ensure that the spins are either all aligned or all anti-aligned with the z-axis, even in
the absence of an external field. At high temperatures, the interactions become less
important and the spins can be either aligned or anti-aligned with the z-axis. The
heat capacity takes the form

CV = Cmax

(

2T

T0

− 1

)

for
T0

2
< T < T0 and CV = 0 otherwise .

Determine Cmax.

8. Compute the partition function of a quantum harmonic oscillator with frequency ω
and energy levels

En = ~ω

(

n+
1

2

)

, n = 0, 1, 2, . . . .

Find the average energy E as a function of temperature T .

Einstein constructed a simple model of a solid as N atoms, each of which vibrates
with the same frequency ω. Treating these vibrations as harmonic oscillators, show
that at high temperatures, kBT ≫ ~ω, the Einstein model correctly predicts the
Dulong-Petit law for the heat capacity of a solid,

CV = 3NkB .

At low temperatures, the heat capacity of many solids is experimentally observed to
tend to zero as CV ∼ T 3. Was Einstein right about this?

9. Consider the Gibbs entropy for a probability distribution p(n),

S = −kB
∑

n

p(n) ln p(n)

(a) By implementing the constraint
∑

n p(n) = 1 through the use of a Lagrange
multiplier show that, when restricted to states of fixed energy E, the entropy is
maximised by the microcanonical ensemble in which all such states are equally likely.
Further show that in this case the Gibbs entropy coincides with the Boltzmann
entropy.

(b) Show that at fixed average energy 〈E〉 =
∑

n p(n)En, the entropy is maximised by
the canonical ensemble. Moreover, show that the Lagrange multiplier imposing the
constraint is proportional to β, the inverse temperature. Confirm that maximizing
the entropy is equivalent to minimizing the free energy.

(c) Show that at fixed average energy 〈E〉 and average particle number 〈N〉, the
entropy is maximised by the grand canonical ensemble. What is the interpretation
of the Lagrange multiplier in this case?

3
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10. Let ZN be the canonical partition function for N particles. Show that the grand
partition function Z can be written as

Z(µ, V, T ) =
∞
∑

N=0

ξNZN(V, T )

where ξ = eβµ is called the fugacity. Show that

〈N〉 = ξ
∂

∂ξ
lnZ , (∆N)2 =

(

ξ
∂

∂ξ

)2

lnZ .

If ZN = ZN
1 /N ! show that Z(ξ, V, T ) = eξZ1(V,T ). For this case, show also that

∆N

〈N〉 =
1

〈N〉1/2
.

11. Make use of the fact that the free energy F (T, V,N) of a thermodynamic system
must be extensive, to explain why

F = V

(

∂F

∂V

)

T,N

+N

(

∂F

∂N

)

T,V

.

The Gibbs free energy is defined as G = F + pV . Use the result above for F to show
that the Gibbs free energy can be expressed as G = µN . Explain why this result was
to be expected from the scaling behaviour of G.

12. A neutral gas consists of Ne electrons e
−, Np protons p

+ and NH hydrogen atoms H.
An electron and proton can combine to form Hydrogen,

e− + p+ ↔ H

At fixed temperature and volume, the free energy of the system is F (T, V ;Ne, Np, NH).
We can define a chemical potential for each of the three species as

µi =
∂F

∂Ni

By minimizing the free energy, together with suitable constraints on the particle
numbers, show that the condition for equilibrium is

µe + µp = µH

Such reactions usually take place at constant pressure, rather than constant volume.
What quantity should you consider instead of F in this case?

Comments and corrections to c.e.thomas@damtp.cam.ac.uk.
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