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Mathematical Tripos Part II Christopher Thomas

STATISTICAL PHYSICS Examples 3 Lent 2024

1. A Wigner crystal is a triangular lattice of electrons in a two-dimensional plane.
The longitudinal vibration modes of this crystal are bosons with dispersion relation
ω = α

√

|k| for small |k|. Show that, at low temperatures, these modes provide a
contribution to the heat capacity that scales as C ∼ T 4.

2. Use the fact that the density of states is constant in d = 2 dimensions to show that
Bose-Einstein condensation does not occur no matter how low the temperature.

3. Consider N non-interacting, non-relativistic bosons, each of mass m, in a cubic box
of side L. Show that the transition temperature scales as Tc ∼ N2/3/mL2 and the
1-particle energy levels scale as En ∝ 1/mL2. Show that when T < Tc, the mean
occupancy of the first few excited 1-particle states is large, but not as large as O(N).

4. Consider an ideal gas of bosons whose density of states is given by g(E) = CEα−1

for some constants C and α > 1. Derive an expression for the critical temperature
Tc, below which the gas experiences Bose-Einstein condensation.

In BEC experiments, atoms are confined in magnetic traps which can be modelled
by a quadratic potential of the type discussed in Question 10 of Example Sheet 2.
Determine Tc for bosons in a three-dimensional trap. Show that bosons in a two-
dimensional trap will condense at suitably low temperatures. In each case, calculate
the number of particles in the condensate as a function of T < Tc.

5. A system has two energy levels with energies 0 and ǫ. These can be occupied by
(spinless) fermions from a particle and heat bath with temperature T and chemical
potential µ. The fermions are non-interacting. Show that there are four possible
microstates, and show that the grand partition function is

Z(µ, V, T ) = 1 + z + ze−βǫ + z2e−βǫ

where z = eβµ. Verify that Z factorises into a product of partition functions for the
two energy levels separately. Evaluate the mean occupation number of the state of
energy ǫ, and show that this is compatible with the result of the calculation of the
mean energy of the system using the Fermi-Dirac distribution. How could you take
account of fermion interactions?
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6. In an ideal Fermi gas the mean occupation number of the single particle state |r〉 is
nr. Show that the entropy

S =
∂

∂T
(kBT lnZ)µ,V

can be written as

S = −kB
∑

r

[(1− nr) ln(1− nr) + nr ln nr] .

Find the corresponding expression for an ideal Bose gas.

Show that (∆nr)
2 = nr(1 − nr) for the ideal Fermi gas. Comment on this result,

especially for very low T . What is the corresponding result for an ideal Bose gas?

7. As a simple model of a semiconductor, suppose that there are N bound electron
states, each having energy −∆ < 0, which are filled at zero temperature. At
non-zero temperature some electrons are excited into the conduction band, which
is a continuum of positive energy states. The density of these states is given by
g(E) dE = A

√
E dE where A is a constant. Show that at temperature T the mean

number nc of excited electrons is determined by the pair of equations

nc =
N

e(µ+∆)/kBT + 1
=

∫

∞

0

g(E) dE

e(E−µ)/kBT + 1
.

Show also that, if nc ≪ N , kBT ≪ ∆ and eµ/kBT ≪ 1, then

2µ ≈ −∆+ kBT ln

[

2N

A
√

π(kBT )3

]

.

8. * Let f(E) be a smooth function, independent of T , bounded at E = 0, and not
growing too fast for large E. Establish the (asymptotic) expansion for µ > 0 and
small T

∫

∞

0

f(E) dE

e(E−µ)/T + 1
∼
∫ µ

0

f(E) dE +
π2

6
T 2f ′(µ) + . . . .

[Hint: Split integral into ranges E < µ and E > µ. For E < µ, separate off the
integral of f . Make change of variable E − µ = Tx, use binomial expansion for
denominator, exploit values of Gamma function and Riemann zeta function.]
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9. Consider an almost degenerate Fermi gas of electrons with spin degeneracy gs = 2.
At high temperatures, show that the equation of state is given by

pV = NkBT

(

1 +
λ3N

4
√
2gsV

+ . . .

)

where λ is the thermal wavelength of the electrons. At low temperatures, show that
the chemical potential is

µ = EF

(

1− π2

12

(

kBT

EF

)2

+ . . .

)

,

and the mean energy is

E =
3NEF

5

(

1 +
5π2

12

(

kBT

EF

)2

+ . . .

)

.

10. Consider a gas of non-interacting ultra-relativistic electrons, whose mass may be
neglected. Find an integral for the grand potential Φ. Show that 3pV = E. Show that
at zero temperature pV 4/3 = const. Show that at high temperatures E = 3NkBT ,
and the equation of state coincides with that of a classical ultra-relativistic gas.

11. A crude non-relativistic model of a white dwarf star consists of a sphere of radius
R of free electrons at zero temperature together with a sufficient number of protons
to make the star electrically neutral. Determine the energy Eel of all the electrons.
Assuming the gravitational energy of the star is given by Egrav = −γM2/R, where M
is the total mass of the star, show that if the state of equilibrium of the star is given
by minimising the total energy Egrav + Eel then R is proportional to M−

1

3 . What
justification can be given for neglecting the proton zero-point energy?

Comments and corrections to c.e.thomas@damtp.cam.ac.uk.
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