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Mathematical Tripos Part I1 Dr. Ronojoy Adhikari
Electrodynamics Michaelmas 2023
Problems 2.

SI units are used. The signature is — + ++.

Please send comments/amendments etc. to : rad413@cam.ac.uk

1. An infinite straight wire lies along the z-axis, and for ¢ < 0 there is no current or field.
For ¢t > 0 a uniform current I flows in the wire. Show that for ¢ > 0 the vector potential
A(t,z,y) = Az in the Lorenz gauge is

. {P;L;ln(9+\/92—1) for 6 > 1,

0 for 6 < 1,

where 0 = ct/r and r = /22 + y2. Obtain E and B and discuss the behaviour of the fields
as t — oo.

2. For a localised charge density p(x)e ™" and current density J(x)e™** use current con-
servation to show that

1.
2, J;(x) d*x = e jpmy — EZWQ;]' )

where

1
m = 3 /X x J(x) *x, Q;J = 3/$i33'j,0(x>dgx-

Hence show that if [ p(x) d*x = [ xp(x) d*x = 0 then at distances r > ¢/w > a, where a
is the extent of the charge and current distribution, the leading contributions to the scalar
(x)e~ ™t and vector potentials A(x)e ™! are

11,
%———lrk’QAiA' /“’
?(x) 6 471'607’6 iy Qs

and

. 1 -
Ai(x) =~ %emik(& X m); — E%G’krkw@@j,

where r = |x|, X = x/r and k = w/c. Writing Q}; = Qy; + Pd;;, where Qi = 0, show
that the terms involving P may be removed by a gauge transformation, at least at large
distances. These results represent magnetic dipole and electric quadrupole radiation.
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3. A small loop of wire lies in a plane with unit normal N, and encloses an area S. A
current Iy coswt flows around the loop, with ¢/w much larger than the size of the loop.
Using results from Question 2, show that in the far-field at displacement x from the centre
of the loop, the magnetic vector potential is

N 1,8 1
A(t,x) =% xN “Zﬂ_orcw sin(wt — kr) + O (ﬁ) :
where k = w/c and r = |x].
[You may use the result § x;dx; = Se;j,Ny.]

Find the leading-order magnetic field in the far-field and show that the average radiated
power dE/dt is

dE  po S*IRw*
dt 120 3

4. (Optional, for enthusiasts.) Let ¢ be the retarded scalar potential given by

1 p(tretaY) 3
t = d
o(t,x) 47T60/ R &

where R = |x — y|, the retarded time t,, =t — R/c, and set R = (x —y)/R. Show that

8 o ]- p(tretay) 3
geﬁ(t,x)—m/ w¥) gy,

where p(tet, y) is Op(t,y) /Ot evaluated at t,e. Show further that

1 ~ (1 I,
V(b(tu X) = /R (ﬁp@rem Y) + Jip(treta y>> d3y :

4dmeq

Hence verify, using V2(1/R) = —476®) (x — y), that ¢ satisfies the wave equation

C0(t%) = . x).

Write down a similar retarded solution for the vector potential A in terms of the current
density J.

Now assume that p and J are non-zero only in a finite region. Setting x = x/|x/, show
that the leading terms in the far-field expansion are

E<t7 X) ~ 47/:|0)(| / (ﬁp(treta y>c - j<tret> Y)) d3y

— 47/:\0x|§( X ()E X /j(tret,y)) al?’y7
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where conservation of current, integration by parts and the discarding of a surface integral
has been used, and

. 1
B(t,X) ~ = Ho X X /J(tretay) d3y = —X X E(t,X) :
C

Note that these results do not assume the dipole approximation. Determine the Poynting
vector.

[Hint: When using current conservation, and integration by parts, be careful with the y-
dependence of tyet.]

5. Starting from the power radiated in the electric-dipole approximation, derive Larmor’s
formula for the rate at which radiation is produced by a non-relativistic particle of charge
g moving along a trajectory x(t).

A non-relativistic particle of mass m, charge ¢ and energy FE is incident along a radial
line in a central potential V' (r). The potential is vanishingly small for r very large, but
increases without bound as r — 0. Show that the total amount of energy £ radiated by

the particle is
g’ /
~ 3mem? JE—V(r)

where V (ry) = E, assuming £ < E.

Suppose that V' is a Coulomb potential C'/r. Evaluate £.

6. For a relativistic particle of charge g on a trajectory y*(7), where 7 is proper time, the
current density 4-vector is

JH(z) = qc/(5(4)(x —y(r)yH(r)dr,

with ¢y, = —c* and ¢° > 0. Show that the 4-vector potential is given by
Ab(z) = ;‘—0 / O(2° — 22)8(nas(x® — 22)(a” — 2P))JH(2) dz
m
_MOqC ZJ”(T*)
A7 RY (1), (7e)’

where RY(7) = 2 — y”(7) and 7. is determined by R¥(7.)R,(7.) = 0 and R°(7.) > 0.

Verify that the Lorenz gauge condition d,A* = 0 holds and show that

_ Hogc ;- Yo
F v — R S RVS B h Sz/ = Yy — .
12 47T (prp) ( H) where Y prp
and all quantities on the right are evaluated at 7,. Check this result for the case of a
stationary charge at the origin.
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