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Mathematical Tripos Part II Lent Term 2025

General Relativity Dr. J.M. Evans

Example Sheet 1

1. Consider the motion of light in a laboratory on board an accelerating spacecraft in deep space. By using the
Equivalence Principle (in a form which you should state), obtain an expression for the deflection of light moving
approximately horizontally through a laboratory on the surface of the Earth. Give your answer in the form

∆θ

∆φ
=

kGM

c2R
,

where ∆θ is the angle through which light is deflected as it traverses the laboratory, ∆φ is the angle the laboratory
subtends at the centre of the Earth,M and R are the mass and radius of the Earth, and k is a numerical constant,
to be determined.

2. An astronaut, Alice, moves on a circular orbit of radius R around the Earth, while her twin, Bob, stays
at home on the Earth’s surface. They each measure time by counting radio pulses from a distant, stationary
source. By applying the formulas for gravitational redshift and for time dilation (from Special Relativity), show
that the rate at which Bob ages, compared to the rate at which Alice ages, is given by

(
1−

GM

c2RE

)/(
1−

GM

c2R

)3/2
,

where RE is the Earth’s radius and M is its mass. (You may disregard effects due to the Earth’s rotation.)
Deduce that Alice and Bob age at approximately the same rate if R = 3

2
RE .

3. Write down the line element of (flat) Euclidean 3-space in cylindrical polar coordinates (r, φ, z). Show that
the 2-dimensional line element

ds2 =
dr2

1− rs/r
+ r2dφ2,

where rs is a constant, can be regarded as the line element on a surface of revolution z = f(r) in Euclidean
3-space (where the function f(r) is to be found). Sketch the surface, and comment on the behaviour as r is
reduced towards rs.

4. Starting with the line element for flat spacetime in cylindrical polar coordinates (t, r, φ, z), obtain the
Langevin line element for a rotating observer

ds2 = −dt2(c2 − r2ω2) + dr2 + 2r2ωdθdt+ r2dθ2 + dz2,

where θ = φ− ωt and ω is constant.
A perfect fibre-optic cable is laid round the Earth’s equator (r = R, z = 0) and two photons travel around

the cable in opposite directions at the speed of light (so that ds2 = 0 on their trajectories), starting from the
same point. Show that one photon will arrive back at its starting point (for the first time) a time ∆t before the
other, where

∆t =
4πωR2

c2 − ω2R2
.

.
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5. A geodesic can be defined as a curve xα(µ) that satisfies

ẍα + Γ α
β γ ẋ

β ẋγ = f(µ) ẋα ,

where Γ α
β γ is the (Levi-Civita) connection, a dot denotes differentiation with respect to the parameter µ, and

f(µ) is some function. If, in addition, f(µ) = 0, then the geodesic is said to be affinely parametrized.
Show that, by changing to a new parameter λ(µ), any geodesic can be affinely parametrized. If λ is an

affine parameter, show that any other affine parameter can be written in the form Aλ+B, where A and B are
constants (and A 6= 0).

6. Suppose that a system with coordinates qr(λ) is governed by a Lagrangian L(q, q̇) with no explicit depen-
dence on λ, and that L is homogeneous of degree k in the ‘velocities’ q̇ r(λ), i.e.,

q̇ r ∂L

∂q̇ r
= kL .

Show that if k > 1 then dL/dλ = 0 on the extremal curves, or solutions of the Euler-Lagrange equations.
Does the same conclusion hold for a Lagrangian L(q, q̇) that is homogeneous of degree k = 1 in velocities?

Given such a Lagrangian, let L = L2. By relating the Euler-Lagrange equations, show that any extremal curve
for L on which L > 0 is also an extremal curve for L. Is the converse true?

7. Obtain the geodesic equations for the Langevin metric (in question 4) in the form of four first integrals.
What is their physical significance?

Show that for a particle moving initially with speed v in the radial direction the initial accelerations in the
radial and θ directions are rω2 and −2ωv (with velocities and accelerations measured using coordinate time t).
How should this be interpreted?

8. Two metrics gαβ and ĝαβ are conformally related if ĝαβ = Ω2gαβ for some scalar function Ω. Show that their

Christoffel symbols
{

α
β γ

}
and

{̂
α
β γ

}
are related by

{̂
α
β γ

}
=

{
α
β γ

}
+Ω−1(δαβΩ,γ + δαγΩ,β − gαδgβγΩ,δ).

In Nordstrøm’s theory of gravity the metric is given by gαβ = e2ϕηαβ , where ϕ is a scalar function of position
and ηαβ is the Minkowski metric. Compute the equation of a geodesic in Nordstrøm’s theory and use your result
to show that TαT βgαβ , where T

α is the tangent vector corresponding to an affine parameter, is constant on the
geodesic.

Using the results of question 5, show that a null geodesic is also a null geodesic in Minkowski spacetime, and
hence deduce that light rays are not subject to gravitational deflection.

Show that for any time-like geodesic, with suitably chosen parameter µ,

d2xα

dµ2
= −ηαγψ,γ

for some function ψ.

[A comma denotes differentiation with respect to a coordinate, e.g. ϕ, α = ∂αϕ , and the Christoffel symbols are

defined by
{

α
β γ

}
= 1

2
gαµ( gβµ,γ + gµγ, β − gβγ, µ) . ]
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9. 2-dimensional de Sitter space-time has the line element

ds2 = −du2 + cosh2 u dφ2 ,

where −∞ < u <∞ and 0 ≤ φ < 2π. Compute the Christoffel symbols and hence the geodesic equations. Verify
that the equations of an affinely parametrized geodesic xα = xα(λ) can be derived from the variational principle

δ

∫
(u̇2 − cosh2 u φ̇2) dλ = 0,

where u̇ = du/dλ etc. Verify from the variational principle that there are two first integrals

cosh2u φ̇ = K ,

cosh2u u̇2 = K2 + L cosh2u ,

along the geodesic, where K and L are constants.
Show that if K = 0 the geodesics are φ = const. If K 6= 0, show that λ may be eliminated in favour of φ as

a parameter along the geodesic and obtain the equation

v′ 2 =M2 − v2,

where v = tanhu, v′ = dv/dφ andM is a constant depending on L and K. Hence show that the K 6= 0 geodesics
are given by

tanhu =M sin(φ− φ0) ,

where φ0 is a constant. Show also that M2 > 1 for timelike geodesics, M2 = 1 for null geodesics and M2 < 1 for
spacelike geodesics. Regarding u and φ as cartesian coordinates, sketch the set of geodesics starting from (0, 0).

Show from your diagram that no two such timelike geodesics will meet again, but that spacelike geodesics
may recross each other. Demonstrate also that there are pairs of points which cannot be joined by a geodesic.
Which, if any, of these statements would be valid in Minkowski spacetime?

Comments to: J.M.Evans@damtp.cam.ac.uk
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