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Mathematical Tripos Part II Lent Term 2025

General Relativity Dr. J.M. Evans

Example Sheet 2

1. (i) Consider a parametrised curve given by xµ(λ) or x̃α(λ), depending on the choice of coordinates.
Check that Tµ = dxµ/dλ and T̃α = dx̃α/dλ are related by the transformation rule for components of a
vector.

Using, in addition, the relation between the metric components gµν and g̃αβ in the coordinates above,

check that Tµ = gµνT
ν and T̃α = g̃αβT̃

β are related by the transformation rule for components of a
covector.

(ii) With notation as (i), start from the geodesic equation in coordinates xµ,

dTµ

dλ
+ Γµ

ν ρ T
ν T ρ = 0 ,

substitute for Tµ in terms of T̃α, then compare with the geodesic equation in coordinates x̃α to show that

∂xµ

∂x̃α
Γ̃α
β γ =

∂xν

∂x̃β

∂xρ

∂x̃γ
Γµ
ν ρ +

∂2xµ

∂x̃β∂x̃γ
.

2. Let xµ be coordinates on a manifold of dimension n, and let gµν be components of a metric with a
Taylor expansion about the origin:

gµν = ηµν + Cµνρ x
ρ +

1

2!
C ′

µνρσ x
ρxσ + . . . .

Consider a change of coordinates, also given by a Taylor expansion:

x̃α = xα +
1

2!
Aα

βγ x
βxγ +

1

3!
A′α

βγδ x
βxγxδ + . . . .

What can be assumed about symmetries of the coefficients C, C ′, A and A′, without loss of generality?

With these assumptions, show that C and A each have 1

2
n2(n + 1) independent components. Find

the number of independent components of C ′ and A′ and hence show that the difference is 1

12
n2(n2 − 1).

What can be deduced from these observations?

3. A static spacetime has line element

ds2 = −e2φ/c
2

c2 dt2 + gij dx
idxj

where φ and gij are functions only of xi, with i, j = 1, 2, 3, while x0 = ct. Show that

Γ 0

0 i =
1

c2
∂φ

∂xi

and find Γ 0
0 0, Γ

i
0 0 and Γ 0

i j , where Γα
β γ is the Levi-Civita connection (give your answer in terms of gij , the

inverse of gij , where necessary).

An observer is at rest in the coordinate system above and has 4-velocity V α = dxα/dτ , where τ is
proper time. Use the normalisation condition V αVα = −c2 to find V 0 and V0.

The 4-acceleration is defined by Aα = (dV α/dτ) + Γα
β γV

βV γ . Show that Aα = ∂φ/∂xα.
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4. If Aα is a covector field, let

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ
.

By writing this expression in terms of covariant derivatives, or otherwise, show that Fαβ is a tensor field.

If Uα and V α are vector fields, the commutator [U, V ]α is defined by

[U, V ]α = Uβ ∂V α

∂xβ
− V β ∂Uα

∂xβ
.

Show that [U, V ]α is a vector field.

5. The metric gαβ(x) has the property that, if each point xα is mapped to φα(x), distances are unaltered.
Such a mapping is called an isometry for this metric. Show that

gαβ
(

φ(x)
)∂φα

∂xγ

∂φβ

∂xδ
= gγδ(x) .

Setting φα(x) = xα + ǫξα(x), where ǫ is small, show that to first order in ǫ

ξγ
∂gαβ
∂xγ

+ gγβ
∂ξγ

∂xα
+ gγα

∂ξγ

∂xβ
= 0 .

Show also, using the formula for the connection components, that this condition can be written in tensorial
form as

∇αξβ +∇βξα = 0 .

This is known as Killing’s equation and solutions ξα are called Killing covector fields.

(i) Consider a massive, freely falling particle moving along an affinely parametrized geodesic with
tangent vector V α. Show that Killing’s equation implies that E = ξαV

α is constant along the geodesic.

(ii) If a Killing vector field takes the form ξα = (1,0) in a given coordinate system, show that
∂gαβ/∂x

0 = 0. What is the physical interpretation of E in this case?

6. Write down the radial Euler-Lagrange equation for the Schwarzschild metric and show that, in the
case of a circular geodesic orbit in the equatorial plane, this determines the period of the orbit in terms
of Schwarzschild coordinate time. How does this relate to the Newtonian result?

Alice orbits the Earth on a circular geodesic path of radius R, while Bob stays at home on the Earth’s
surface, at radius RE (the Earth is taken to be a non-rotating sphere).

(i) Show that Alice’s proper time τA is related to the Schwarzschild time coordinate t by

dτ2A = (1− 3M/R) dt2 .

(ii) How is Bob’s proper time τB related to the coordinate t ? Deduce that Bob and Alice age at the
same rate if R = 3

2
RE .

2



C
op

yr
ig

ht
 ©

 2
02

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

7. A massive particle moves on a circular orbit of radius R in Schwarzschild spacetime, with E and
h denoting the usual first integrals for t and φ (take units with G = c = 1). Use the r Euler-Lagrange
equation to find conditions that R must satisfy, and show that they are the same as would be obtained
by considering motion in the 1-dimensional potential Veff(r), where

2Veff(r) =
(

1 +
h2

r2

)(

1− 2M

r

)

− 1 .

(i) Express h in terms of R and M and deduce that there are circular orbits for R > 3M .

(ii) Show that these orbits are stable if R > 6M and unstable if 3M < R < 6M .

(iii) Show that the fractional binding energy (i.e. 1−E) of a stable circular orbit in the limit R → 6M is

(1− 2
√
2/3) ≃ 0.0572.

8. A massive test particle flies past a spherically symmetric star of mass M and Schwarzschild radius
rs = 2M (using units in which G = c = 1), which causes a small deflection in the particle’s trajectory.
Using the radial equation with effective potential Veff(r) and setting u = 1/r, show that

( du

dφ

)2

=
E2 − 1

h2
− u2 + rsu

( 1

h2
+ u2

)

.

Now consider a solution of the form u(φ) =
∑

∞

n=0
ǫnun(φ), where ǫ ≪ 1.

(i) If rsu ≪ 1, the form of the trajectory to leading order can be found by setting rs = 2M = 0. Show
that the resulting solution is u0(φ) = (1/b) sinφ, with a suitable choice of the coordinate φ, where b
is a constant. Show also that if the speed of the particle is v when r = b, then h = bv/

√
1− v2.

(ii) Setting ǫ = rs/b ≪ 1 and taking u0(φ) as in (i), find a second order differential equation for u1(φ).
Hence show that, to order ǫ, the angular deflection is given by

∆φ ≈ 2ǫ
(

1 +
b2

2h2

)

=
rs(1 + v2)

bv2
.

Comment on the limit v → 1.

9. In an attempt to unify Special Relativity and Newtonian Gravity, the orbits in a central potential are
calculated using the Euler-Lagrange equations derived from the Lagrangian

L = −c2γ−1 +
GM

r

where γ = (1− v·v/c2)−1/2 (in the obvious notation).

Obtain the orbital equation for motion in the equatorial plane in the form

u′′ + u = γ ℓ−1

where u = 1/r, prime denotes differentiation with respect to φ, the usual angular coordinate in the plane,
ℓ = h2/GM , and h is a conserved quantity, to be specified.

Show that γ =
(

1 + h2(u′2 + u2)/c2
)1/2

. Using the approximation γ ≈ 1 + 1

2
h2(u′2 + u2)/c2, show

that the rate of advance of the perihelion is one sixth of that obtained using the Schwarzschild metric.
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10. A classical test of general relativity is the time delay caused to radar signals bounced off planets
or satellites. Ignoring curvature a light ray is given by r sinφ = b. By differentiating this, show that
r2dφ2 = b2dr2/(r2 − b2).

Assuming the above relation between dφ and dr obtain the approximate equation for light rays in
Schwarzschild

dt = ± r√
r2 − b2

(

1 +
2M

r
− Mb2

r3

)

dr ,

where O
(

(M/r)2
)

terms have been neglected. Show that, to this approximation, the time taken to move
from r = b to r = r1 is given by

∆t =
√

r2
1
− b2 + 2M cosh−1(r1/b) − M

r1

√

r2
1
− b2 ,

and identify the first term on the right hand side.

Comments to: J.M.Evans@damtp.cam.ac.uk
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