1. A static spacetime has line element
\[ds^2 = -e^{2\phi/c^2}c^2dt^2 + g_{ij}dx^idx^j , \]
where \(\phi \) and \(g_{ij} \) are independent of \(x^0 = ct \), and \(i, j = 1, 2, 3 \). Show that
\[\Gamma^0_{\alpha\beta} = \frac{1}{c^2} \left(n_\alpha \frac{\partial \phi}{\partial x^\beta} + n_\beta \frac{\partial \phi}{\partial x^\alpha} \right) \quad \text{and} \quad \Gamma^i_{00} = g^{ij} \frac{1}{c^2} \frac{\partial \phi}{\partial x^j} e^{2\phi/c^2} , \]
where \(n_\alpha = (1, 0, 0, 0) \).

Let \(u^\alpha \) be the 4-velocity of a co-moving observer (i.e. an observer at rest in these coordinates, so that \(u^i = 0 \) and \(u^0u_0 = -c^2 \)). Show that
\[\nabla_\beta u_\alpha = -\frac{1}{c^2} u_\beta \nabla_\alpha \phi \quad \text{and so} \quad \nabla_\alpha \phi = u^\beta \nabla_\beta u_\alpha . \]
Show further that
\[g^{\alpha\beta} \nabla_\alpha \nabla_\beta \phi = R^{\alpha\beta} u_\alpha u_\beta \]
and hence that
\[g^{ij} \nabla_i \nabla_j \phi + \frac{1}{c^2} g^{ij} \nabla_i \phi \nabla_j \phi = R^{\alpha\beta} u_\alpha u_\beta . \]
[Hint: you may find it helpful to start from the Ricci identity \(u_\alpha;\beta\gamma - u_\alpha;\gamma\beta = R^\delta_{\alpha\beta\gamma} u_\delta \).]

What does the last equation reduce to in the Newtonian limit (weak gravity) with \(T_{\alpha\beta} = \rho u_\alpha u_\beta \)?

2. A perfect fluid has 4-velocity \(u^\alpha \) which is tangent to the fluid flow lines (the integral curves of \(u^\alpha \)) and which satisfies \(u^\alpha u_\alpha = -c^2 \). If the fluid has particle number density \(n \), density \(\rho \) and pressure \(p \), then the particle flux density \(N_\alpha \) and energy-momentum tensor \(T_{\alpha\beta} \) are given by
\[N_\alpha = nu_\alpha , \quad T^{\alpha\beta} = (\rho + p/c^2)u^\alpha u^\beta + pg^{\alpha\beta} , \]
and both are conserved: \(\nabla_\alpha N^\alpha = \nabla_\beta T^{\alpha\beta} = 0 \).

(i) If the fluid has zero pressure, show that \(\nabla_\alpha (\rho u^\alpha) = 0 \) and that the fluid flow lines are geodesics. Show also that \(\rho/n \) is constant on each such geodesic.

(ii) If the fluid has pressure, find an expression for \(\nabla_\alpha (\rho u^\alpha) \) and show that
\[\left(\rho + \frac{1}{c^2} p \right) u^\beta \nabla_\beta u_\alpha + \nabla_\alpha p + \frac{1}{c^2} u^\alpha u^\beta \nabla_\beta p = 0 . \]

3. Consider a perfect fluid, with definitions and notation as in question 2, and a static, weak-field metric of the form given in question 1, but with \(g_{ij} = \delta_{ij} \). In the Newtonian limit, \(\varphi/c^2 \sim v^2/c^2 \ll 1 \), where \(v \) is a typical speed, so that \(u^\alpha \approx (c, u) \). Show that, to lowest order,
\[\frac{\partial n}{\partial t} + \nabla \cdot (nu) = 0 , \]
where \(\nabla \) is the usual vector operator in 3-dimensional flat space. What is the corresponding equation for \(\rho \)? Show that, in the Newtonian limit, \(\rho u^\beta u_{i,\beta} = -p, (i = 1, 2, 3) \) and hence that
\[\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla \varphi - \frac{1}{\rho} \nabla p . \]
4. The Friedmann-Lemaître-Robertson-Walker (FLRW) metric with \(c = 1 \) is given by:

\[
\begin{align*}
\text{ds}^2 &= -dt^2 + a(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right)
\end{align*}
\]

and

\[
\begin{align*}
G_{tt} &= \frac{3(\ddot{a}^2 + k)}{a^2}, \quad G_{rr} = -\frac{2a\ddot{a} + \dot{a}^2 + k}{1 - kr^2}.
\end{align*}
\]

For a dust universe with \(T_{tt} = \rho \), show that \(\rho a^3 = \rho_0 \), where \(\rho_0 \) is a constant.

(i) In the case \(k = 0 \), show that \(a\ddot{a} = A^2 \), where \(A \) is a constant, and deduce that the universe expands for ever. Without further calculation, explain how this conclusion is affected in the case \(k < 0 \).

(ii) In the case \(k > 0 \), we define a new time coordinate \(\eta \) by \(\frac{d\eta}{dt} = \frac{1}{Ra} \), where \(R^2 = k^{-1} \). Derive the equations

\[
\begin{align*}
a(\eta) &= B(1 - \cos \eta), \quad t(\eta) = BR(\eta - \sin \eta),
\end{align*}
\]

where \(B \) is a constant, and hence show that the universe recollapses within a finite time.

(iii) For the solution in (ii), set \(r = R\sin \chi \) in the line element and use the formula for the 3-space volume element

\[
dV = (g_{\chi\chi} g_{\theta\theta} g_{\phi\phi})^{1/2} d\chi d\theta d\phi
\]

to determine the volume of the universe at a given scale factor (the angular coordinates run from 0 to \(\pi \) for \(\chi \) and \(\theta \), and from 0 to 2\(\pi \) for \(\phi \)). Hence find the maximum volume in terms of \(MG \), where \(M \) is the total mass of the universe, and use dimensional analysis to restore the dependence of the result on \(c \).

5. Obtain the geodesic equations for the closed \((k = 1)\) FLRW dust universe, using \(\eta, \chi, \theta, \phi \) coordinates and show that there are null geodesics with \(\theta = \chi = \frac{1}{4} \pi \). How many times can a photon encircle the universe from the time of creation to the moment of annihilation?

6. Show that the Einstein-Maxwell equations (i.e. the Einstein equations with energy momentum tensor for an electromagnetic field \(T^{\alpha\beta} = F^{\alpha\gamma} F^\beta_\gamma - \frac{1}{4} F^{\gamma\delta} F_{\gamma\delta} g^{\alpha\beta} \)) can be written

\[
R_{\alpha\beta} = \kappa \left(F_{\alpha\gamma} F^\gamma_\beta - \frac{1}{4} g_{\alpha\beta} F^{\gamma\delta} F^{\gamma\delta} \right).
\]

For a line element of the form

\[
\text{ds}^2 = -f(r)c^2 dt^2 + \frac{1}{f(r)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2),
\]

the only non-zero components of the Ricci tensor are given by

\[
R_{tt}/(c^2 f) = -f R_{rr} = \frac{1}{2} f'' + f'/r, \quad R_{\theta\theta} = R_{\phi\phi}/ \sin^2 \theta = 1 - r f'/f .
\]

In the case

\[
F_{tr} = -F_{rt} = \frac{Q}{r^2} \quad \text{and} \quad F_{\alpha\beta} = 0 \quad \text{otherwise},
\]

show that a solution can be found that reduces to the Schwarzschild solution when \(Q = 0 \).

Find an analogous solution in the case \(R_{\alpha\beta} = \Lambda g_{\alpha\beta} \).
7. For the Schwarzschild metric, a retarded time coordinate u is defined by $u = ct - r^*$, where $dr/dr^* = F(r) = 1 - 2M/r$. Show that, with this definition, the line element can be written
\[ds^2 = -F \, du^2 - 2du \, dr + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right). \]

Consider a spacecraft that is freely falling radially into a Schwarzschild black hole, with 4-velocity V^α and proper time τ. The spacecraft emits monochromatic radio signals, of wave length λ_e, which propagate radially outwards and are received, with wavelength λ_o, by a distant observer who is at rest with respect to the Schwarzschild coordinates.

Show that
\[\lambda_o \lambda_e = \Delta t_o \Delta \tau = \Delta u_o c \Delta \tau \approx V_u c \Delta \tau \]
where, for example, Δt_o is the proper time interval during which the observer receives one cycle of the signal and $\Delta \tau$ is the time for the spacecraft to emit one cycle.

Now show that $V_u = -K$, where K is a constant, and that
\[V^u = \frac{K + \sqrt{K^2 - Fc^2}}{F}, \quad V^r = -\sqrt{K^2 - Fc^2}. \]

Deduce that on the world line of the spacecraft near the horizon $du/dr \sim -2/F$, and that $u \sim -2r^*$ and $F \sim e^{-u/(4M)}$.

Conclude that, just as the spacecraft is about to cross the event horizon, the observer sees the frequency red-shifted with an observer-time dependence $\propto \exp(-ct/(4M))$.

8. Show that, for an observer with proper time τ moving in the Schwarzschild spacetime,
\[c^2 = Fc^2 \dot{t}^2 - \dot{r}^2/F - r^2(\dot{\theta}^2 + \sin^2 \theta \, \dot{\phi}^2), \]
where $\dot{t} = dt/dr$ etc., and $F = 1 - 2M/r$. Show, that for an observer within the Schwarzschild horizon, $\dot{r}^2 \geq -c^2 F$ however the observer moves. Deduce that any observer crossing the Schwarzschild horizon will reach $r = 0$ within a proper time $\pi M/c$.

9. Let M be the torus ($S^1 \times S^1$) and define the metric $g_{\alpha\beta}$ on M by
\[ds^2 = \sin \theta \,(d\phi^2 - d\theta^2) + 2\cos \theta \, d\theta \, d\phi, \]
where $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq 2\pi$. Show that, for a null geodesic,
\[\dot{\phi}^2 + 2 \dot{\phi} \dot{\theta} \cot \theta - \dot{\theta}^2 = 0, \]
where dot is differentiation with respect to an affine parameter, and deduce that the curves given by $\phi = -2 \ln \sin(\theta/2) + \phi_0$ and $\phi = -2 \ln \cos(\theta/2) + \phi_0$ are null geodesics. Use another first integral of the Euler-Lagrange equations to show that in both cases $\theta = p\lambda$, where λ is an affine parameter and p is a constant.

Show that one family of null geodesics wraps round the torus an infinite number of times within a finite range of the affine parameter, never reaching the null curve $\theta = 2\pi$, and that the other family of null geodesics crosses this curve.

Is this space geodesically complete? Is the Riemann tensor well-behaved (no calculation required)?
10. (i) A weak gravitational field has the spacetime metric \(g_{\alpha\beta} = \eta_{\alpha\beta} + \epsilon h_{\alpha\beta} + O(\epsilon^2) \), where \(\eta_{\alpha\beta} \) is the Minkowski metric and \(\epsilon \) is small. Show that
\[
R_{\alpha\beta\gamma\delta} = \frac{1}{2} \epsilon (h_{\alpha\delta,\beta\gamma} + h_{\beta\gamma,\alpha\delta} - h_{\alpha\gamma,\beta\delta} - h_{\beta\delta,\alpha\gamma}) + O(\epsilon^2).
\]
Let \(h = h^{\gamma\gamma} \) and define \(\bar{h}_{\alpha\beta} = h_{\alpha\beta} - \frac{1}{2} \eta h_{\alpha\beta} \). Check that \(h_{\alpha\beta} = \bar{h}_{\alpha\beta} - \frac{1}{2} \eta h_{\alpha\beta} \) where \(\eta = \bar{h}^{\gamma\gamma} \), and show that
\[
R_{\alpha\beta} = \frac{1}{2} \epsilon (-\Box \bar{h}_{\alpha\beta} + \bar{h}_{\alpha}^{\gamma,\beta} + \bar{h}_{\beta}^{\gamma,\alpha} + \frac{1}{2} \eta h_{\alpha\beta} \Box \bar{h}) + O(\epsilon^2),
\]
where \(\Box = \eta^{\alpha\beta} \partial_\alpha \partial_\beta \). What is the linearised vacuum Einstein equation for \(\bar{h}_{\alpha\beta} \)?

(ii) An infinitesimal coordinate transformation, which is also known as a gauge transformation, is given by \(x^\alpha \to x^\alpha - \epsilon f^\alpha(x) \). Show that \(h_{\alpha\beta} \to h_{\alpha\beta} + f_{\alpha,\beta} + f_{\beta,\alpha} + O(\epsilon) \), but that the curvature tensors are unchanged to leading order in \(\epsilon \). Deduce that if \(f^\alpha \) is chosen to satisfy \(\Box f^\alpha = -h_{\alpha\beta,\beta} \), then in the new coordinates the gauge condition \(\bar{h}_{\alpha}^{\alpha\beta} = 0 \) holds. Conclude that, with this choice, the linearised vacuum Einstein equation for weak fields is the wave equation:
\[
\Box \bar{h}_{\alpha\beta} = 0.
\]

(iii) Consider a gravitational wave solution \(h_{\alpha\beta} = H_{\alpha\beta} \epsilon^{ik_\alpha x^\beta} \) with \(H_{\alpha\beta,\gamma} = 0 \) (note: this is an ansatz for \(h_{\alpha\beta} \), not \(\bar{h}_{\alpha\beta} \)). Show that, in order to satisfy both the linearised Einstein equation and the gauge condition in (ii), \(k^\alpha \) must be a null vector and \(H_{\alpha\beta} k^\beta = \frac{1}{2} k^\alpha H_{\beta}^{\beta} \) must hold.

(iv) Corresponding to the remaining freedom to make gauge transformations, show that there is an arbitrariness in the solution given by \(H_{\alpha\beta} \to H_{\alpha\beta} + k_\alpha v_\beta + v_\alpha k_\beta \) for any \(v^\alpha \). How many degrees of freedom are there for a gravitational wave propagating in a given direction \(k^\alpha \)? If \(k^\alpha = k(1, 0, 0, 1) \), show that we may take the independent components of \(H_{\alpha\beta} \) to be \(H_{11} = -H_{22} \) and \(H_{12} = H_{21} \).

Comments to: J.M.Evans@damtp.cam.ac.uk