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Mathematical Tripos Part II Lent Term 2025

General Relativity Dr. J.M. Evans

Example Sheet 4

1. A static spacetime has line element

ds2 = −e2φ/c
2

c2dt2 + gij dx
idxj ,

where φ and gij are independent of x0 = ct, and i, j = 1, 2, 3. Show that

Γ 0
α β =

1

c2

(

nα
∂φ

∂xβ
+ nβ

∂φ

∂xα

)

and Γ i
0 0 = gij

1

c2
∂φ

∂xj
e2φ/c

2

,

where nα = (1, 0, 0, 0).

Let uα be the 4-velocity of a co-moving observer (i.e. an observer at rest in these coordinates, so that
ui = 0 and u0 u0 = −c2). Show that

∇βuα = − 1

c2
uβ∇αφ and so ∇αφ = uβ∇βuα .

Show further that
gαβ∇α∇βφ = Rαβu

αuβ

and hence that

gij∇i∇jφ +
1

c2
gij∇iφ∇jφ = Rαβu

αuβ .

[ Hint: you may find it helpful to start from the Ricci identity uα;βγ − uα;γβ = Rδ
αβγuδ. ]

What does the last equation reduce to in the Newtonian limit (weak gravity) with Tαβ = ρ uαuβ?

2. A perfect fluid has 4-velocity uα which is tangent to the fluid flow lines (the integral curves of uα)
and which satisfies uαuα = −c2. If the fluid has particle number density n, density ρ and pressure p, then
the particle flux density Nα and energy-momentum tensor Tαβ are given by

Nα = nuα, Tαβ = (ρ+ p/c2)uαuβ + pgαβ ,

and both are conserved: ∇αN
α = ∇βT

αβ = 0.

(i) If the fluid has zero pressure, show that ∇α(ρu
α) = 0 and that the fluid flow lines are geodesics.

Show also that ρ/n is constant on each such geodesic.

(ii) If the fluid has pressure, find an expression for ∇α(ρu
α) and show that

(

ρ+
1

c2
p
)

uβ∇βu
α + ∇αp +

1

c2
uαuβ∇βp = 0 .

3. Consider a perfect fluid, with definitions and notation as in question 2, and a static, weak-field metric
of the form given in question 1, but with gij = δij . In the Newtonian limit, ϕ/c2 ∼ v2/c2 ≪ 1, where v is
a typical speed, so that uα ≈ (c,u). Show that, to lowest order,

∂n

∂t
+∇·(nu) = 0 ,

where ∇ is the usual vector operator in 3-dimensional flat space. What is the corresponding equation for
ρ ? Show that, in the Newtonian limit, ρ uβui; β = −p, i (i = 1, 2, 3) and hence that

∂u

∂t
+ (u ·∇)u = −∇φ− 1

ρ
∇p .
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4. The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric with c = 1 is given by:

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

)

and

Gtt =
3(ȧ2 + k)

a2
, Grr = −2aä+ ȧ2 + k

1− kr2
.

For a dust universe with Ttt = ρ, show that ρ a3 = ρ0, where ρ0 is a constant.

(i) In the case k = 0, show that aȧ2 = A2, where A is a constant, and deduce that the universe expands
for ever. Without further calculation, explain how this conclusion is affected in the case k < 0.

(ii) In the case k > 0, we define a new time coordinate η by
dη

dt
=

1

Ra
, where R2 = k−1. Derive the

equations
a(η) = B(1− cos η) , t(η) = BR(η − sin η) ,

where B is a constant, and hence show that the universe recollapses within a finite time.

(iii) For the solution in (ii), set r = R sinχ in the line element and use the formula for the 3-space volume
element

dV = (gχχ gθθ gφφ)
1/2dχ dθ dφ

to determine the volume of the universe at a given scale factor (the angular coordinates run from 0 to π
for χ and θ, and from 0 to 2π for φ). Hence find the maximum volume in terms of MG, where M is the
total mass of the universe, and use dimensional analysis to restore the dependence of the result on c.

5. Obtain the geodesic equations for the closed (k = 1) FLRW dust universe, using η, χ, θ, φ coordinates
and show that there are null geodesics with θ = χ = 1

2π. How many times can a photon encircle the
universe from the time of creation to the moment of annihilation?

6. Show that the Einstein-Maxwell equations (i.e. the Einstein equations with energy momentum tensor
for an electromagnetic field Tαβ = FαγF β

γ − 1
4F

γδFγδg
αβ) can be written

Rαβ = κ
(

FαγFβ
γ − 1

4gαβFγδF
γδ
)

.

For a line element of the form

ds2 = −f(r)c2dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2) ,

the only non-zero components of the Ricci tensor are given by

Rtt/(c
2f) = −fRrr = 1

2f
′′ + f ′/r , Rθθ = Rφφ/ sin

2 θ = 1− rf ′ − f .

In the case

Ftr = −Frt =
Q

r2
and Fαβ = 0 otherwise,

show that a solution can be found that reduces to the Schwarzschild solution when Q = 0.

Find an analogous solution in the case Rαβ = Λgαβ .
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7. For the Schwarzschild metric, a retarded time coordinate u is defined by u = ct− r∗, where
dr/dr∗ = F (r) = 1− 2M/r. Show that, with this definition, the line element can be written

ds2 = −F du2 − 2du dr + r2(dθ2 + sin2 θ dφ2) .

Consider a spacecraft that is freely falling radially into a Schwarzschild black hole, with 4-velocity V α

and proper time τ . The spacecraft emits monochromatic radio signals, of wavelength λe, which propagate
radially outwards and are received, with wavelength λo, by a distant observer who is at rest with respect
to the Schwarzschild coordinates.

Show that
λo

λe
=

∆to
∆τ

=
∆uo

c∆τ
=

∆ue

c∆τ
≈ V u

c

where, for example, ∆to is the proper time interval during which the observer receives one cycle of the
signal and ∆τ is the time for the spacecraft to emit one cycle.

Now show that Vu = −K, where K is a constant, and that

V u =
K +

√
K2 − Fc2

F
, V r = −

√

K2 − Fc2 .

Deduce that on the world line of the spacecraft near the horizon du/dr ∼ −2/F , and that u ∼ −2r∗

and F ∼ e−u/(4M).

Conclude that, just as the spacecraft is about to cross the event horizon, the observer sees the frequency
red-shifted with an observer-time dependence ∝ exp(−ct/(4M)).

8. Show that, for an observer with proper time τ moving in the Schwarzschild spacetime,

c2 = Fc2ṫ2 − ṙ2/F − r2(θ̇2 + sin2 θ φ̇2),

where ṫ = dt/dτ etc., and F = 1 − 2M/r. Show, that for an observer within the Schwarzschild horizon,
ṙ2 ≥ −c2F however the observer moves. Deduce that any observer crossing the Schwarzschild horizon will
reach r = 0 within a proper time πM/c.

9. Let M be the torus (S1 × S1) and define the metric gαβ on M by

ds2 = sin θ (dφ2 − dθ2) + 2 cos θ dθ dφ ,

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π. Show that, for a null geodesic,

φ̇2 + 2 φ̇ θ̇ cot θ − θ̇2 = 0 ,

where dot is differentiation with respect to an affine parameter, and deduce that the curves given by
φ = −2 ln sin(θ/2) + φ0 and φ = −2 ln cos(θ/2) + φ0 are null geodesics. Use another first integral of the
Euler-Lagrange equations to show that in both cases θ = pλ, where λ is an affine parameter and p is a
constant.

Show that one family of null geodesics wraps round the torus an infinite number of times within a
finite range of the affine parameter, never reaching the null curve θ = 2π, and that the other family of
null geodesics crosses this curve.

Is this space geodesically complete? Is the Riemann tensor well-behaved (no calculation required)?
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10. (i) A weak gravitational field has the spacetime metric gαβ = ηαβ + ǫhαβ + O(ǫ2), where ηαβ is the
Minkowski metric and ǫ is small. Show that

Rαβγδ = 1
2ǫ(hαδ,βγ + hβγ,αδ − hαγ,βδ − hβδ,αγ ) + O(ǫ2) .

Let h = hγ
γ and define hαβ = hαβ − 1

2h ηαβ . Check that hαβ = hαβ − 1
2h ηαβ where h = h

γ
γ , and show

that
Rαβ = 1

2ǫ(−�hαβ + hα
γ
,βγ + hβ

γ
,αγ + 1

2ηαβ �h ) + O(ǫ2) ,

where � = ηαβ∂α∂β . What is the linearised vacuum Einstein equation for hαβ?

(ii) An infinitesimal coordinate transformation, which is also known as a gauge transformation, is given
by xα → xα − ǫfα(x). Show that

hαβ → hαβ + fα,β + fβ,α +O(ǫ) ,

but that the curvature tensors are unchanged to leading order in ǫ. Deduce that if fα is chosen to satisfy
�fα = −hαβ

,β , then in the new coordinates the gauge condition hαβ
,β = 0 holds. Conclude that, with

this choice, the linearised vacuum Einstein equation for weak fields is the wave equation:

�hαβ = 0 .

(iii) Consider a gravitational wave solution hαβ = Hαβ e
ikβx

β

with Hαβ,γ = 0 (note: this is an ansatz
for hαβ , not hαβ). Show that, in order to satisfy both the linearised Einstein equation and the gauge
condition in (ii), kα must be a null vector and Hαβk

β = 1
2kαHβ

β must hold.

(iv) Corresponding to the remaining freedom to make gauge transformations, show that there is an arbi-
trariness in the solution given by Hαβ → Hαβ + kαvβ + vαkβ for any vα. How many degrees of freedom
are there for a gravitational wave propagating in a given direction kα? If kα = k(1, 0, 0, 1), show that we
may take the independent components of Hαβ to be H11 = −H22 and H12 = H21.

Comments to: J.M.Evans@damtp.cam.ac.uk
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