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Mathematical Tripos Part II Michaelmas 2024

D23 Fluid Dynamics II Grae Worster

mgw1@cam.ac.uk

1 Revision of main ideas and results from IB Fluids

1.1 Continuum hypothesis

We assume that at every point x of the fluid and at all times t we can define, by averaging
over a small volume, “continuum” properties like density ρ(x, t), velocity u(x, t) and
pressure p(x, t). Here x refers to a position in the laboratory frame (Eulerian description).
We thus do not deal with the dynamics of individual molecules.

1.2 Time derivatives

A fluid particle, sometimes called a material element or a Lagrangian point, is one that
moves with the fluid, so that its position x(t) satisfies

ẋ = u(x, t).

The rate of change of a quantity as seen by a fluid particle is written D/Dt, given by the
chain rule as

D

Dt
≡

∂

∂t
+ u·∇.

This is called the material (or convected or substantial) derivative. In particular, the
acceleration of a fluid particle is

Du/Dt = ∂u/∂t+ u·∇u.

1.3 Mass conservation

Because matter is neither created nor destroyed, the mass density ρ satisfies

∂ρ/∂t+∇·(ρu) = 0, or equivalently Dρ/Dt+ ρ∇·u = 0.

The quantity ρu is called the mass flux. For an incompressible fluid, the density of each
material element is constant, and so Dρ/Dt = 0. Hence

∇·u = 0.

In this course, we shall also restrict attention to fluids that are incompressible and have
uniform density, so that ρ is independent of both x and t.

For planar flows, the condition∇·u = 0 is automatically satisfied by u = (ψy,−ψx, 0),
with streamfunction ψ(x, y).

1.4 Kinematic boundary condition

Applying mass conservation to a region close
to a boundary S, we have

ρu−

·n = ρu+
·n,

n

S

u+

u−

i.e. the normal component of velocity must be continuous across S. In particular at a
fixed boundary, u ·n = 0. Equivalently, if the moving boundary of a fluid is given by the
equation F (x, t) = 0, then since the surface consists of material points, DF/Dt = 0. This
form of the boundary condition is sometimes more convenient for free-surface problems.
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1.5 Momentum conservation

On the assumption that the only surface
force that acts across a material surface ndS
is given by a pressure p(x, t) as −pndS, then
Newton’s equation of motion is

ρ
Du

Dt
= −∇p+ F(x, t),

n
dS

where F(x, t) is the force per unit volume (called ‘force density’ or ‘body force’, e.g. grav-
ity ρg) that acts on the fluid. This is Euler’s equation.

1.6 Dynamic boundary condition

On the same assumption, momentum conservation applied to a region close to the bound-
ary S gives (in the absence of surface tension)

−p−n = −p+n,

and thus the pressure must be continuous across S.
In this course, we abandon the inviscid assumption of §1.5 & §1.6, and will include

tangential frictional forces (stresses) across material surfaces to derive new equations for
momentum conservation with new boundary conditions. We will find that there is a
viscous contribution to the normal force on a surface.

1.7 Example: Potential flow past a circular cylinder

The steady Euler equation with F = 0 is satisfied by a potential flow u = ∇φ with
∇·u = ∇

2φ = 0, and pressure from Bernoulli p+ 1

2
ρu2 = const.

The solution with φ ∼ Ux = Ur cos θ as r → ∞ (i.e. uniform stream of velocity U)
and u·n = ∂φ/∂r = 0 on r = R is

φ = U(r +R2/r) cos θ,

with associated streamfunction ψ = U(r −R2/r) sin θ.

1.8 Other important ideas and results

• Introduction to viscosity and shear stresses

• Simple unidirectional flows (e.g. Couette)

• Introduction to vorticity

• Potential flows

• Bernoulli’s equation

• Momentum integral [Integral form of Euler]

• Water waves

• Fluid dynamics in a rotating frame

• Shallow-water equations
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