1 Revision of ideas and results from IB Fluids

1.1 Continuum hypothesis

We assume that at every point \mathbf{x} of the fluid and at all times t we can define, by averaging over a small volume, properties like density $\rho(\mathbf{x}, t)$, velocity $\mathbf{u}(\mathbf{x}, t)$ and pressure $p(\mathbf{x}, t)$. Here \mathbf{x} refers to a position in the laboratory frame (Eulerian description). We thus do not deal with the dynamics of individual molecules.

1.2 Time derivatives

A fluid particle, sometimes called a material element or a Lagrangian point, is one that moves with the fluid, so that its position $\mathbf{x}(t)$ satisfies

$$\dot{\mathbf{x}} = \mathbf{u}(\mathbf{x}, t).$$

The rate of change of a quantity as seen by a fluid particle is written D/Dt, given by the chain rule as

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla.$$

In particular, the acceleration of a fluid particle is

$$Du/Dt = \partial\mathbf{u}/\partial t + \mathbf{u} \cdot \nabla \mathbf{u}.$$

1.3 Mass conservation

Because matter is neither created nor destroyed, the mass density ρ satisfies

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \quad \text{or equivalently} \quad D\rho/Dt + \rho \nabla \cdot \mathbf{u} = 0.$$

The quantity $\rho \mathbf{u}$ is called the mass flux. For an incompressible fluid, the density of each material element is constant, and so $D\rho/Dt = 0$. Hence

$$\nabla \cdot \mathbf{u} = 0.$$

In this course, we shall also restrict attention to fluids that are incompressible and have uniform density, so that ρ is independent of both \mathbf{x} and t.

For planar flows, the condition $\nabla \cdot \mathbf{u} = 0$ is automatically satisfied by $\mathbf{u} = (\psi_y, -\psi_x, 0)$, with streamfunction $\psi(x, y)$.

1.4 Kinematic boundary condition

Applying mass conservation to a region close to a boundary S, we have

$$\rho\mathbf{u}^- \cdot \mathbf{n} = \rho\mathbf{u}^+ \cdot \mathbf{n},$$

i.e. the normal component of velocity must be continuous across S. In particular at a fixed boundary, $\mathbf{u} \cdot \mathbf{n} = 0$. Equivalently, if the moving boundary of a fluid is given by the equation $F(\mathbf{x}, t) = 0$, then since the surface consists of material points, $DF/Dt = 0$. This form of the boundary condition is sometimes more convenient for free-surface problems.
1.5 Momentum conservation
On the assumption that the only surface force that acts across a material surface $\mathbf{n}dS$ is given by a pressure $p(x, t)$ as $-p\mathbf{n}dS$, then Newton’s equation of motion is

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \mathbf{F}(x, t),$$

where $\mathbf{F}(x, t)$ is the force per unit volume (called force density, e.g. gravity ρg) that acts on the fluid. This is Euler’s equation.

1.6 Dynamic boundary condition
On the same assumption, apply momentum conservation to a region close to the boundary S gives (in the absence of surface tension)

$$-p\mathbf{n} = -p^+\mathbf{n},$$

and thus the pressure must be continuous across S. In this course, we abandon the inviscid assumption of §1.5 & §1.6, and will include tangential frictional forces across material surfaces.

1.7 An example: steady flow past a circular cylinder
The steady Euler equation with $\mathbf{F} = 0$ is satisfied by a potential flow $\mathbf{u} = \nabla \phi$ with $\nabla \cdot \mathbf{u} = \nabla^2 \phi = 0$, and pressure from Bernoulli $p + \frac{1}{2} \rho u^2 = \text{const}$.

The solution with $\phi \sim Ux = Ur \cos \theta$ as $r \to \infty$ (i.e. uniform stream of velocity U) and $\mathbf{u} \cdot \mathbf{n} = \partial \phi / \partial r = 0$ on $r = R$ is

$$\phi = U(r + R^2 / r) \cos \theta,$$

with associated streamfunction $\psi = U(r - R^2 / r) \sin \theta$, and tangential velocity $2U \sin \theta$ on $r = R$. In the plot below (credit: Incredio) the iso-ϕ are shown in white with the streamfunction (iso-ψ) in black.