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Fluid Dynamics II

M. R. E. Proctor∗

December 5, 2008

1 Introduction

1.1 Books, scope of the course

1.2 Revision of IB (handout)

These have already been handed out.

1.3 Stress and Rate of Strain

Rate of Strain tensor. Consider the velocity field u(x) close to a fixed point, (w.l.o.g.)

the origin,

ui(x) − ui(0) = xj
∂ui

∂xj

∣
∣
∣
∣
0

+ higher order terms

The velocity gradient tensor ∂ui/∂xj can be divided into a symmetric part, eij, the rate

of strain tensor, and an antisymmetric part, Ωij, the vorticity tensor, Then

∂ui

∂xj

=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

+
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)

= eij + Ωij

with Ωij in 3-D being expressible in terms of three independent components

Ωij =






0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0




 = ǫikjΩk .

∗mrep@damtp.cam.ac.uk
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Note that ω = ∇× u = ǫijk
∂uk

∂xj
= 2Ω, so that Ω is half the vorticity ω.

Thus

ui(x) = ui(0) + eijxj +
1

2
(ω × x)i + . . . ,

where 1
2
(ω × x) represents a solid body rotation.

Since eij is a symmetric, second order tensor, it has real, orthogonal eigenvectors. With

respect to them as axes

e =






e1 0 0

0 e2 0

0 0 e3






where the ei are called the principal rates of strain. If the fluid is incompressible eii = 0.

Stress Tensor. The forces acting on a moving fluid can be divided into:

i) long-range forces, e.g. gravity and electromagnetic forces which change slowly with

position. Thus the force on each part of a small volume is the same and the total force is

proportional to δV . These are known as volume or body forces; and

ii) short-range forces, which penetrate only a few atomic distances into a volume. In

a gas a molecule transports momentum through its mean free path before depositing

this momentum in a collision. In a liquid the short-range forces are due to momentum

transport and intermolecular Van der Waals forces as the molecules jostle and slide past

each other. Whatever the mechanism, the force F , is proportional to the surface area

dA and a function of the direction of the orientation of dA (and of the fluid motion). By

Newton’s third law F (−n) = −F (n).

Consider the following tetrahedron:

On the oblique face, the force is τ (n)δA. The other faces have force τ (n(j))δA(j), for

j = 1, 2, 3, where n
(j)
i = −δij.

As the volume δV → 0, the forces must balance. All the δA’s ∼ δV 2/3, so the surface

2
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forces are larger than the effects of any body force (which is ∝ δV ). So we must have

τ (n)δA +
3∑

j=1

τ (n(j))δA(j) = 0,

but δA(j) = njδA, so δA cancels and

τ (n) = τ ((1, 0, 0))n1 + τ ((0, 1, 0))n2 + τ ((0, 0, 1))n3.

ie τ is a linear function of the nj’s. We can write

τj(n) = σijnj,

where σij is a tensor (by quotient theorem) and independent of n. ie a property of the

fluid.

Consider the total torque on a small volume δV

Gi = εijk

∫

τjxkdS

= εijk

∫

σjlnlxkdS

= εijk

∫
∂

∂xl

(σjlxk)dV

= εijk

∫

σjkdV + εijk

∫

xk
∂σjl

∂xk

dV

∼ εijkσjkδV + Torque due to body forces(∼ δV 4/3).

So for equilibrium we must have

εijkσjk = 0, σij = σji symmetric.

We can separate σij:

σij = cδij + dij,

where 3c = σii and dii = 0. dij is called the deviatoric stress; cδij is isotropic. If a fluid is

at rest, then all directions are the same so we expect σij to be isotropic. So, dij = 0 when

u = 0.

3
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In this case the total force on the surface S is

∫

S

σijnjdS =

∫

cnidS,

Comparing with the IB result −
∫

S
pnidS, where p is the pressure, wesee that c = −p,

p = −1
3
σkk. Then

σij = −pδij + dij. (1)

1.4 Equation of Motion

From IB we have the equation (Newton’s Law) for a small volume element δV :

ρδV
Du

Dt
≡ ρδV

(
∂u

∂t
+ u · ∇u

)

= FTOT, (2)

where FTOT is the sum of the body forces and internal forces.

Consider a small fluid element δV . Then the force due to the body forces is fδV , where

f is the body force per unit volume. The (ith component of the) force due to tractions

on the surface δS is

∫

δS

τi(n)dS =

∫

δS

σijnjdS

=

∫

δV

∂σij

∂xj

dV

≈ ∂σij

∂xj

∣
∣
∣
∣
x

δV.

So we have from (2), using (∇ · σ)i =
∂σij

∂xj
,

ρ
Du

Dt
= f + ∇ · σ.

4
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Now differentiating equation (1) with respect to xj gives

∂σij

∂xj

= − ∂p

∂xi

+
∂dij

∂xj

,

which in vector form becomes

∇ · σ = −∇p + ∇ · d.

1.5 The relation between stress and rate-of-strain

In a real fluid, experimentally, it is found that dij depends on ∂ui

∂xj
(the rate of deformaiton

of the fluid element), and not on ui (galilean invariance - adding velocity does not change

deformation). For simple fluids (water, oil, etc) it is found that

1. dij is (approximately) a linear function of ∂ui

∂xj
;

2. dij does not depend on absolute displacements of fluid elements (no elastic effects);

3. no memory or long distance effects
(

dij(x, t) = fij(
∂ui

∂xj
(x, t))

)

;

4. isotropic - relation the same in all frames.

On these assumptions (these are called Newtonian Fluids)

dij = Aijkl
∂uk

∂xl

,

where Aijkl is an isotropic tensor of order 4. A general isotropic tensor of order 4 is

Aijkl = νδijδkl + µδikδjl + µ′δilδjk,

but Aijkl = Ajikl (as dij is symmetric), so µ = µ′. Therefore,

Aijkl
∂uk

∂xl

= (νδijδkl + µδikδjl + µδjkδil)
∂uk

∂xl

= νδij
∂uk

∂xk

+ µ
∂ui

∂xj

+ µ
∂uj

∂xi

= νδij(∇ · u) + 2µeij.

And dii = 0 implies 3ν∇ · u + 2µekk = ∇ · u(3ν + 2µ) = 0, so ν = −2µ/3. Therefore,

dij = 2µeij −
2µ

3
ekkδij.

5
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Note that dij only depends on eij (which is reasonable as ωij does not lead to deformation

locally).

Finally, assuming ∇ · u = 0, we obtain

dij = 2µeij,

where µ is a scalar (and can be taken as constant for well mixed fluid, though many fluids

have viscosity depending on temperature e.g. Golden Syrup). Then

∂dij

∂xj

= µ

(
∂2ui

∂xj∂xj

+
∂2uj

∂xi∂xj

)

= µ∇2ui + µ∇(∇ · u).

So

ρ
Du

Dt
= −∇p + f + µ∇2u.

This is the famous Navier-Stokes equation. The quantity µ is called the dynamic viscosity.

We usually work with the kinematic viscosity ν = µ/ρ. ν has dimensions [L]2[T]−1. For

water, ν ≈ 1.1 × 10−6m2s−1 (or one acre per century). For air ν ≈ 1.5 × 10−5m2s−1.

When can ∇ · u = 0 be justified? From inviscid, comressible flow we have compressive

waves at the sound speed c, where

c2 =
∂p

∂ρ
,

so ∆ρ ∼ c2∆p. By Bernoulli, ∆p ∼ ρou
2, so ∆ρ = ρou

2/c2. Define the Mach Number

M = u/c, such that M2 = ∆ρ/ρo. So a fluid can be considered incompressible at low

speeds compared with c.

1.6 Boundary Conditions at an Interface

It is easily shown that at a interface between two fluids we have, using small cylinder

argument,

6
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u2 · n = u1 · n.

More generally, for a moving boundary, given by F (x, t) = 0 we know that a particle on

the surface stays on that surface. So, on each side we have (∇F ‖ n)

DF

Dt
= 0 =

∂F

∂t
+ u · ∇F.

In the presence of viscosity, we may need more boundary conditions. At a boundary

between two viscous fluids, we need to avoid ∞ stresses. This means that velocity (all

components) is continuous at rigid boundary moving at velocity V . So, u = V at the

boundary.

At a non-rigid boundary (eg air-water interface) traction on a small pillbox must be in

balance

τ2 = σ2 · n,

τ1 = −σ1 · n,

and in the limit τ1 + τ2 = 0 so σ1 · n = σ2 · n, or σ
(2)
ij nj − σ

(1)
ij nj ≡ [σijnj] = 0.

In terms of the rate of strain for an incomressible fluid, we get

[−pδij + 2µeij]nj = 0,

or

[−pni + 2µeijnj] = 0.

eg at such a boundary in (x, y) plane the

7
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normal stress is

[−p + 2µezz] = [−p + 2µ
∂uz

∂z
] = 0,

and the tangential stresses are

[2µexz] =

[

µ(
∂ux

∂z
+

∂uz

∂x
)

]

= 0, [2µeyz] = 0.

If boundaries are curved non-cartesian coordinates are appropriate, then we need an

expression for eij in polars.

If the boundary is rigid, stress conditions are not needed.

If there is surface tension at an interface, then there is an extra normal surface tension

force

[σijnj] = λni

(
1

R1

+
1

R2

)

≡ Ti.

where R1,2 are the principal radii of curvature.

1.7 Conservation Laws and dissipation of energy

The Navier-Stokes (N-S) equations can be written in conservation form. Already we have

conservation of mass

dM

dt
=

∫

V

∂ρ

∂t
dV = −

∫

S

ρ(u · n)dS = −
∫

V

∇ · (ρn)dV

8
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as no holes appear. So,
∂ρ

∂t
+ ∇ · ( ρu

︸︷︷︸

mass flux

) = 0

This is a typical conservation form
∂f

∂t
+ ∇ · F = 0, where F is the flux of f .

We can also write N-S in conservation form - conservation of momentum (assume ρ =

const and ∇ · u = 0)

ρ

[
∂ui

∂t
+ (u · ∇)ui

]

= Fi +
∂σij

∂xj

,

or

ρ

[
∂ui

∂t
+

∂

∂xi

(uiuj)

]

= Fi +
∂σij

∂xj

.

So,
∂

∂t
(ρui) +

∂

∂xi

( ρuiuj − σij
︸ ︷︷ ︸

flux of momentum

) = Fi
︸︷︷︸

body forces

.

So if there are no body forces, then the equation is in conservation form.

In a fixed volume, V , with no body forces

d

dt

∫

V

ρui dV +

∫

S

ρui(u · n) dS =

∫

S

σijnj dS.

So a change in momentum, apart from flux through the boundary, occurs only due to

surface stresses, as expected.

N.B Energy is not conserved, even without body forces

E =
KE

unit vol
=

1

2
ρu · u.

So,

∂E

∂t
= ρu · u̇

= ui

[

−ρ(u · ∇)ui +
∂σij

∂xi

]

= −u · ∇E +
∂

∂xi

(uiσij) − σij
∂ui

∂xi

.

9
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Thus

∂E

∂t
+

∂

∂xj

(ujE − uiσij) = −σij
∂ui

∂xj

= −σijeij (as σij is symmetric)

= peii − 2µeijeij
︸ ︷︷ ︸

viscous dissipation

,

and peii = 0 as ∇ · u = 0. So for a fixed volume V

d

dt

∫

V

E dV +

∫

S

(u · n)EdS =

∫

S

(u · τ ) dS − 2µ

∫

V

eijeij dV +

∫

V

u · F dV,

where the first term on the RHS is the work dine by surface tractions, and the last term

is the work done by body forces.

There is an alternative form for energy evolution, though it is not as clearly related to

the various work terms. N-S equations can be written

ρ
Du

Dt
= −∇p + µ∇2u.

So,
d

dt

∫

V

1

2
ρu · u dV +

∫

S

((u · n)E + p(u · n) dS = µ

∫

V

ui
∂2ui

∂xj∂xj

dV.

Now,
∫

ui
∂2ui

∂xj∂xj

dV = −
∫

V

∂ui

∂xj

∂ui

∂xj

dV +

∫

u · (n · ∇u)dS.

Therefore,

d

dt

∫

V

E dV +

∫

S

(E(u · n) + p(u · n) − µ(u · (n · ∇u))) dS = −µ

∫

V

|∇u|2 dV.

1.8 Reynolds number and dynamical similarity

Behaviour of physical systems depends not on size and speed alone - these are measured

in arbitrary units - but only on dimensionless quantities. We have already met the Mach

Number M = u/c, where u is a typical velocity.

The importance of the viscosity is measured by the Reynolds Number. Suppose that a

10
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system has a typical size L and that a typical velocity is U . Then consider

inertial forces

viscous forces
∼ ρu · ∇u

µ
∂eij

∂xi

∼ ρU2/L

µU/L2
.

The ratio is
ULρ

µ
=

UL

ν
= Re − the Reynolds Number.

For large Reynolds numbers the inertial forces dominate; for small Reynolds numbers the

viscous forces dominate.

More carefully, we can non-dimensionalize the system. Write

x = Lx̂, u = U û, p = ρU2p̂, t =
L

U
t̂.

(eg if L = 1m then length is measured in meters.) Then

ρ
∂u

∂t
=

ρU2

L

∂û

∂t̂
, ρu · ∇u =

ρU2

L
û · ∇̂u, ∇p =

ρU2

L
∇̂p̂, µ∇2u =

µU

L2
∇̂2û.

Then substituting in gives

∂û

∂t
+ û · ∇̂û = −1

ρ
∇̂p̂ +

1

Re
∇̂2û,

where Re is the Reynolds number. Whatever the scale, flows with the same Re look

similar.

N.B. L is usually a fixed scale depending on the size of the system (eg box size, body size)

- not necessarily the actual size on which the velocity varies. Values of Re:

• Submarine:

L ∼ 100m,

ν ∼ 10−6m2s−1 (water),

U ∼ 10km/h ∼ 104m/104s = 1m/s.
UL
ν

∼ 1×102

10−6 ∼ 108

• Bubbles in Beer:

L ∼ 10−4m

U ∼ 10−3m/s

Re ∼ 10−1

• Flow of rock, swimming micro-organisms, Re tiny.

11



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

2 Some Simple Flow Fields

2.1 Poiseuille and Couette Flow

There are some flows which are rectilinear and this leads to considerable simplifications.

Poiseuille flow is flow in a pipe (independent of time).

N-S equations

ρu · ∇u = −∇p + µ∇2u, u = 0 at r = a.

Look for solution of the form u = (0, 0, u(r)) in polar coordinates (r, φ, z). Then u ·∇u =

(0, 0, u∂u
∂z

) = 0. Also, r and φ components give ∂p
∂r

= ∂p
∂φ

= 0. So, p = p(z) and z

component gives

0 = −dp

dz
+ µ

[
1

r

d

dr

(

r
du

dr

)]

, (3)

where the last component is independent of z.

Let G = − 1
µ

dp
dz

, contant. So p depends linearly on z. Then (3) gives

0 = G +

[
1

r

d

dr

(

r
du

dr

)]

.

⇒ d

dr

(

r
du

dr

)

= −Gr

⇒ du

dr
= −1

2
Gr +

A

r
︸︷︷︸

→0, singular

⇒ u = −1

4
Gr2 + B =

1

4
G(a2 − r2),

a parabolic profile.

12
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We can work out the mass flux

ρ2π

∫ a

0

ru dr = 2πρ

∫ a

0

1

4
G(a2r − r3) dr

=
πρG

2

(
a4

2
− a4

4

)

=
πρGa4

8
.

The the volume flux is Q = πGa4/8. Also, we can work out the tangential tangential

stress on the wall. Stress is

2µerz = µ
∂u

∂r

∣
∣
∣
∣
r=a

= −µG/,
a

2
/unit area

= −dp

dz

a

2
2πa/unit length

= −πa2 dp

dz
/unit length

= −πa2 ∆p

L
,

which equals net pressure force on the ends (must do so to have equilibrium). Clearly, Re

does not come into the solution!

Since either u or ∂u

∂n
vanishes on boundary, we can work out the disspiation using either

formula of the last section. The total dissipation in the fluid is

∫ L

0

dz · 2π
∫ a

0

rdr · µ|∇u|2 = µ 2πL

∫ a

0

rdr

(
du

dr

)2

= 2πµL

∫ a

0

rdr
1

4
G2r2, since

du

dr
= −1

2
Gr,

= 2πµL
G2a4

16

= Q∆p,

which equals the rate of working of the surface forces (at ends only).

N.B. This is a solution of particularly simple form. It is a laminar flow. But when

Re & 104, instabilities appear leading to turbulence in the pipe - most fascinating part of

fluid mechanics is nonlinearity.

13
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Couette Flow between two translating plates, distance a apart. At y = ±a/2 we have

u = (±U/2, 0, 0)

Look for solution of the form u = (u(y), 0, 0). No imposed pressure gradient. Same

arguments as above lead to p is constant everywhere (exercise). So, (now in cartesian

coordinates),

0 = µ
d2u

dy2
⇒ u =

Uy

a
.

There is no net traction on the fluid as tangetial stresses on the two plates cancel.The

dissipation per unit area in x, z, namely µ

∫ a/2

−a/2

(
du

dy

)2

dy, is balanced by rate of working

of tractions (these now add up rather than cancel – exercise). This flow too can be un-

stable if Re = Ua/ν is large enough.

Flow down a sloping plate needs gravity as it drives the flow. The plate makes an

angle θ with horizonta. Use cartesian axes (x, y) downstream and perpendicular to the

plate.Free surface at y = a. Pressure above fuid surface is p0 (const).

The y component of the equation of motion is

∂p

∂y
= −ρg cos θ,

so

p = −ρg cos θ(y − h) + p0 + f(x),

14
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where f(x) = 0 as no applied pressure. The x component is

0 = ρg sin θ + µ
d2u

dy2
,

where the first term on the right hand side is a body force. The boundary conditions are

u = 0 at y = 0 and ∂u
∂y

= 0 at y = h, so

u =
1

2µ
ρg sin θ · y(2h − y),

(no tangential stress), so u(h) = 1
2µ

ρg sin θ · h2 and

Q =

∫ h

0

u dy =
1

1µ
ρg sin θ

∫ h

0

(2hy − y2) dy

=
1

3µ
ρg sin θh3.

2.2 Time dependent problems

Stokes Flow with a harmonically oscillating plate at y = 0.

As before, we can look for a solution where u = (u(y, t), 0, 0). Then

∂u

∂t
= ν

∂2u

∂y2
, (4)

with u = U cos ωt at y = 0 and u → 0 as y → −∞. Using the substitution u = ℜ[ûeiωt],

the first boundary condition becomes û = U at y = 0, and the time derivative is

∂u

∂t
= ℜ[iωŷ(y)eiωt].

So equation (4) becomes

iωû = ν
∂2û

∂y2
.
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Therefore, using the identity
√

i = 1√
2
(1 + i),

û = Ue
√

iω
ν

y = Ue
√

ω
2ν

(1+i)y,

Or, taking the real part,

u = Ue
√

ω
2ν

y cos

(

ωt +

√
ω

2ν
y

)

.

This defines a new length scale
√

2ν/ω.

The total dissipation per unit horizontal area is given by

ρν

∫ 0

−∞

(
∂u

∂y

)2

d.

This is periodic in time, so take a time average. If c = ℜ(ĉeiωt) and d = ℜ(d̂eiωt), then

ω

2π

∫ 2π/ω

0

cd dt =

∫ 2π/ω

0

ω

2π
(ĉR cos ωt − ĉI sin ωt)(d̂R cos ωt − d̂I sin ωt)dt

=

∫ 2π/ω

0

ω

2π
[ĉRd̂R cos2 ωt + ĉI d̂I sin2 ωt + . . .

︸︷︷︸

vanish

]

=
1

2
(ĉRd̂R + ĉI d̂I)

=
1

2
ℜ[cd∗].
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So,

ν

∫ 0

−∞

(
∂u

∂y

)2

dy =
ν

2

∫ 0

−∞

∣
∣
∣
∣

∂û

∂y

∣
∣
∣
∣

2

dy

=
ν

2

∫ 0

−∞

√

iω

ν
Ue

√
ω
2ν

(1+i)y ·
√

−iω

ν
Ue

√
ω
2ν

(1−i)y dy

=
ν

2

ω

ν
U2

∫ 0

−∞
e2
√

ω
2ν

y dy

=
ωU2

2

1

2

√

2ν

ω
.

It should be checked that this is the same as the time and horizontal space average of the

work done by the tractions on y = 0, namely the time average of ρνu∂u
∂y
|y=0.

The Rayleigh Problem with an impulsively started flat plate.

This is another example of rectilinear flow, where u · ∇u = 0, u = (u(y, t), 0, 0), u(y =

0) = (UH(t), 0, 0), (H = Heaviside function). As before, we have to solve

∂u

∂t
= ν

∂2u

∂y2
,

with u(0, t) = UH(t), u → 0 as y → ∞, and u ≡ 0 at t = 0−. We could solve this

by Laplace Transform. But in fact we can use a similarity solution. There is no natural

scale of motion given in the problem. The only way to make a length scale is out of t, ν,

with dimensions [t] = T and [ν] = L2T−1. So,
√

νt has dimensions of length (this is the

diffusion length).

So, try u = Uf(t)g
(

y

2
√

νt

)

, t > 0 , with u = U at y = 0 so f(t) is constant. Then u

becomes

u = Ug(η), where η =
y

2
√

νt
.
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The y derivatives are
∂u

∂y
=

U

2
√

νt
g′(η),

∂2u

∂y2
=

U

4νt
g′′(η),

and t derivative is
∂u

∂t
= Ug′(η)

∂η

∂t
= − yU

4t
√

νt
g′(η).

Substituting these into the equation above gives

− yU

4t
√

νt
g′(η) =

νU

4νt
g′′(η),

or

− 1

2

η

t
g′(η) =

ν

4νt
g′′(η)

⇒ g′′(η) = −2ηg′(η),

thus justifying the choice. Solving this gives

g′(η) = −ce−η2

,

as g, g′ → 0 as η → ∞. Integrating this gives

g = c

∫ ∞

η

e−ξ2

dξ.

Applying the boundary condition g = 1 at η = 0 gives

1 = c

∫ ∞

0

e−ξ2

dξ,

so c = 2/
√

π. Finally,

u(y, t) =
2U√

π

∫ ∞

y/2
√

νt

e−ξ2

dξ ≡ Uerfc
( y

2νt

)

.

We can work out the stress at y = 0

µ
∂u

∂y

∣
∣
∣
∣
y=0

=
µU

2
√

νt
g′(0) = − νU

2
√

νt
ρ

2√
π

= −ρ

√
ν

πt
U

18
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3 Flows at very low Reynolds number

3.1 Introduction

If the flow has zero inertia, then the force balance is entirely between pressure and viscous

forces (and any body forces). Is is assumed that the time and velocity scales are such

that

|u · ∇u| ∼ U2

L
≪ νU

L2
, or Re ≪ 1,

and ∣
∣
∣
∣

∂u

∂t

∣
∣
∣
∣
∼ U

T
≪ νU

L2
, or R̃e ≡ L2

νT
≪ 1

(usually take T ∼ L
U

so R̃e same as Re). So we are left with

0 = −∇p + ρF + µ∇2u, ∇ · u = 0.

This simplification has several properites:

1. Instantaneity - instant response to changes in F or in boundaries;

2. Linearity - any two solutions can be added together to give a third solution. Thus

solutions satisfying boundary conditions can be built up by superposition;

3. Reversibility - if boundaries move at velocity V (t) implies the flow u(x, t), then

changing the boundary velocity to −V leads to flow −u.

It follows from point 3 that flow past an object that is symmetric under reflection in a

plane perpendicular to distant flow field (e.g. a sphere about y − z plane through centre

with velocity in x-direction at ∞) is anti-symmetric under reflection.
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Another result: sphere falling near a wall.

If body force changes sign, then so will u. So there is a contradiction unless u is parallel

to the wall.

Proof of uniqueness of Stokes flow

In V

0 = −∇p1 + ρF + µ∇2u1, 0 = −∇p2 + ρF + µ∇2u2,

and on ∂V

u1,2 = U .

Let v = u2 − u1 and π = p2 − p1. Then

0 = −∇π + µ∇2v, ∇ · v = 0, v = 0 on ∂V.

So,

0 =

∫

V

(−v · ∇π + µv · ∇2v)dV,

⇒ 0 = −
∫

V

(

∇ · (vπ) − µ
∂

∂xi

(

vj
∂vj

∂xi

))

dV − µ

∫

V

(
∂vj

∂xi

)2

dV,

⇒ 0 = −
∫

∂V

v · nπ dS + µ

∫

∂V

nivj
∂vj

∂xi

dS − µ

∫

V

|∇v|2 dV.

The first two terms on the right hand side are zero. Hence ∇v = 0, so v =const= 0.

Minimum Dissipation Theorem

Let u be a solution for Stokes flow with given boundary conditions, with rate of strain

tensor eu
ij. Let v satisfy ∇ · v = 0 and the same boundary conditions as u, with corre-

sponding tensor ev
ij. Let v = u + w (with corresponding tensor ew

ij), where ∇ · w = 0,
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w = on boundaries. Then

∫

V

ev
ije

v
ijdV =

∫

V

eu
ije

u
ijdV +

∫

V

ew
ije

w
ijdV + 2

∫

V

eu
ij

∂wi

∂xj

dV

︸ ︷︷ ︸

= 2

∫

V

∂

∂xj

(
wie

u
ij

)
dV − 2

∫

V

w · ∇2u dV

= 2

∫

∂V

winje
u
ijdS

︸ ︷︷ ︸

=0, as wi=0 on ∂V

− 2
1

µ

∫

V

w · ∇p dV

︸ ︷︷ ︸

=0 by usual calculation

So ∫

V

ev
ije

v
ijdV =

∫

V

eu
ije

u
ijdV +

∫

V

ew
ije

w
ijdV ≥

∫

V

eu
ije

u
ijdV.

So Stokes flow has minimum dissipation for given boundary conditions.

3.2 Two-dimensional Flows

N-S equations at low inertia give

0 = −∇p + µ∇2u,

so if µ is constant then ∇2p = 0 and

0 = ∇2ω.

If the flow is 2-D we can write u(x, y) = ∇× (ψẑ)

u =

(
∂ψ

∂y
,−∂φ

∂x
, 0

)

ω = (0, 0,−∇2ψ).

So, ∇2ψ = 0 (biharmonic equation). We can solve this in several interesting cases

1. Hinged plates separating,

2. Flow in a corner - Moffatt eddies,

3. Paintbrush or knife.
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Hinged Plates Separating

Two rigid plates, one at φ = 0, one at φ = α(t), α̇ = Ω(t).Use polars: ur = (1/r)∂ψ/∂φ =

(1/r)ψφ, uφ = −∂ψ/∂r = −ψr.

At φ = 0, ur = uφ = 0. So ψr = 0 ⇒ ψ = const. Take ψ = 0. Also, ψφ = 0.

At φ = α, ur = 0 and uφ = Ωr. So ψφ = 0, ψr = −Ωr ⇒ ψ = −(1/2)Ωr2.

This suggests we can find a solution of the form ψ = Ωr2f(φ). So, at φ = 0, f = 0 = fφ.

And at φ = α, f = −1/2 and fφ = 0.

Before solving this consider a general class of separable solutions of ∇4ψ = 0,

ψ = rλf(φ),

(cf ∇2Φ = 0, Φ = r±a{sin aφ, cos aφ}.) Then

∇2ψ =
(
λ2f + fφφ

)
rλ−2

∇4ψ =
[
(λ − 2)2(λ2f + fφφ) + λ2fφφ + fφφφφ

]
rλ−4.

So

(λ − 2)2λ2f +
[
(λ − 2)2 + λ2

]
fφφ + fφφφφ = 0

⇒
(

(λ − 2)2 +
∂2

∂φ2

) (

λ2 +
∂2

∂φ2

)

f = 0,

In general the solution is

f = A cos λφ + B sin λφ + C cos(λ − 2)φ + D sin(λ − 2)φ, λ 6= 0, 1, 2.

If λ = 1, we have
(

1 +
∂2

∂φ2

)2

f = 0,
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and

f = A cos φ + B sin φ + Cφ cos φ + Dφ sin φ.

For λ = 0, 2,
∂2

∂φ2

[

4 +
∂2

∂φ2

]

f = 0.

and

f = A cos 2φ + B sin 2φ + C + Dφ.

For a hinged plate, choose λ = 2, ψ = Ωr2f(φ).

at φ = 0, f = 0 = fφ,

at φ = α, f = −1

2
, fφ = 0.

The boundary condition at φ = 0 gives

A + C = 0, 2B + D = 0.

So general solution becomes

f = A(cos 2φ − 1) + B(sin 2φ − 2φ).

The boundary condition at φ = α gives

A(cos 2α − 1) + B(sin 2α − 2α) = −1

2

− 2A sin 2α + 2B(cos 2α − 1) = 0,

so

A =
1 − cos 2α

4(1 − cos 2α − α sin 2α)
, B =

− sin 2α

4(1 − cos 2α − α sin 2α)
.

When α is sufficiently small, the denominator is positive. When denominator is zero,

α = 257◦, there exists a solution with λ = 2 satisfying f = fφ = 0 at φ = 0, α called a
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free corner flow

A + C = 0, 2B + D = 0

⇒ f = A(cos 2φ − 1) + B(sin2 2φ − 2φ)

⇒ A(cos 2α − 1) + B(sin2 α − 2α) = 0,

− 2A sin 2α + 2B(cos 2α − 1) = 0,

which is consistent. If α is greater than this value, the free corner flow induced by the

outer solution is bigger than the flow forced by the plate motion.

Moffatt Eddies

A more interesting flow is the induced free corner flow itself, in a narrow corner - the

so-called Moffatt eddies.

Consider two fixed plates at φ = ±α. Then u = 0 at φ = ±α. Try a solution of the form

f = rλf(φ). Then f = fφ = 0 at φ = ±α. Look for a symmetric f , then ur ∝ ψr is

antisymmetric. So

f = A cos λφ + C cos(λ − 2)φ.

Boundary conditions give

A cos λα + C cos(λ − 2)α = 0,

Aλ sin λα + (λ − 2)C sin(λ − 2)α = 0

So

(λ − 2) cos λα sin(λ − 2)α = λ sin λα cos(λ − 2)α.

This equation determines λ as a function of α.
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Are there real solutions for λ? Let λ = 1 + β. Then

(β − 1) cos(β + 1)α sin(β − 1)α = (1 + β) cos(β − 1)α sin(β + 1)α

⇒ (β − 1) [sin 2βα − sin 2α] = (β + 1) [sin 2βα + sin 2α]

⇒ −2β sin 2α = 2 sin 2βα

⇒ sin 2α

2α
= −sin 2βα

2βα
.

To find real solutions for β we need two equal and opposite intercepts on the curve

y = sin x/x. The minimum possible value for real β is when −y = min(sin x/x), y = .2172,

which gives α ≈ 73◦.

When λ is complex, λ = p + iq, consider

uφ(r, 0) = const · rλ−1(cos(λ − 2)α − cos λα) ∝ rp−1 cos(q ln r + ǫ),

where ǫ depends on α. So we have alternating eddies with size decreasing exponentially

as r → 0:

q ln rN+1 = q ln rN − π,

so
rN+1

rN

= e−π/q.
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The relative strengths are
(

rN+1

rN

)p−1

= e−π(p−1)/q.

eg if 2α = π/2, then λ = 3.74 ± 1.13i, so e−π(p−1)/q = e−π2.74/1.13 ≈ 1/2000.

If u ∼ fλ−1, u · ∇u ∼ r2λ−3, ∇2u ∼ rλ−3. So as λ > 0, inertia can be neglected for

sufficiently small r.

Paintbrush or Knife

On φ = 0, ψ = 0, (1/r)ψφ = −U . On φ = α, ψ = ψφ = 0. Suggest ψ = Urf(r). Then

f(φ) =
−α(α − φ) sin φ + φ sin α sin(α − φ)

α2 − sin2 α
,

(exercise).

3.3 Forces and torques on rigid bodies

The linearity of the Stokes equations menas that we can make progress in understanding

forces and torques on arbitrary bodies. Take an arbitrary body

The flow outside is given by

∇p = µ∇2u,

with u = U (t) + Ω(t) × x on S, and u → 0 as |x| → ∞.

Because of linearity, we know that the drag F and couple G on the body depend linearly
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on U and Ω. So we must have the relation.

(

F

G

)

=

(

A B

C D

) (

U

Ω

)

,

where A,B, etc depend only on µ and the shape etc of V . We can learn a lot about the

nature of these tensors by using the reciprocal theorem.

Consider the flows u (and p) with u = U + Ω × x on S, and u∗ (and p∗) with u∗ =

U ∗ + Ω∗ × x on S. Then

∫

V

u∗
i

∂σij

∂xj

dV = 0

=

∫

S

u∗
i σijnjdS −

∫

V

σij
∂u∗

i

∂xj

dV,

where

∫

V

σij
∂u∗

i

∂xj

dV =

∫

V

σije
∗
ijdV =

∫

V

(−p∗δij + 2µeij)e
∗
ijdV

=

∫

V

2µeije
∗
ijdV =

∫

V

σ∗
ij

∂ui

∂xj

dV

=

∫

S

uiσ
∗
ijnjdS.

But, using
∫

S
σ · n dS = F and

∫

S
x × σ · n dS = G,

∫

S

u∗ · σ · n dS =

∫

S

(U ∗ + (Ω∗ × x)) · σ · n dS

=

∫

S

U ∗ · σ · n + Ω∗ · (x × σ · n) dS

= U ∗ · F + Ω∗ · G
= U · F ∗ + Ω · G∗

by the reciprocal theorem. Thus, for arbitrary U and Ω,

UiAijU
∗
j +UiBijΩ

∗
j + ΩiCijU

∗
j + ΩiDijΩ

∗
j

= U∗
i AijUj + U∗

i BijΩj + Ω∗
i CijUj + Ω∗

i DijΩj.

So Aij = Aji, Bij = Cji, and Dij = Dji irrespective of any symmetries of the body.

Clearly symmetries of body will be reflected in additional symmetries of A, B, etc.
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eg A cube clearly has identical values of A, B, C, D about any axis, so A, D must be

isotropic. By choosing appropriate rotations and reflections we can show that

A = Aδij, D = Dδij, and B = C = 0.

So F = AU and G = DΩ. A cube falling under gravity (F = ρg, G = 0) falls vertically

without rotation.

3.4 Flows due to moving bodies

Rigid Sphere Uniformly Translating

Go into a reference frame in which a sphere is at rest.

Assume that inertia can be neglected and look for an axisymmetric flow (no φ component).

So, and ∇ · u = 0, adopt a stokes stream function in spherical polar coordinates (R, θ, φ)

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ = − 1

R sin θ

∂Ψ

∂R
.

Then we have ∇2ω = ∇×∇× ω = 0, where ω = ∇× u,

u = ∇×
(

0, 0,
Ψ

R sin θ

)

and ω =

(

0, 0,− 1

R sin θ
D2Ψ

)

,

where D2Ψ = ∂2Ψ
∂R2 + sin θ

R2

∂
∂θ

(
1

sin θ
∂Ψ
∂θ

)
. NB D2 6= ∇2!! Thus

∇×∇× ω = ∇×∇×
(

0, 0,− D2Ψ

R sin θ

)

=

(

0, 0,
D4Ψ

R sin θ

)

= 0.

Thus the equation to be solved for Ψ is

D4Ψ = 0,
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with Ψ = 0 at θ = 0; at R = a, uR = uθ = 0 so Ψ = 0 and ∂Ψ
∂R

= 0; and at R → ∞,

uR → U cos θ and uθ → −U sin θ. Thus

1

R2 sin θ

∂Ψ

∂θ
∼ U cos θ,

so

Ψ ∼ 1

2
UR2 sin2 θ, as R → ∞.

Seek a separable solution of the form

Ψ =
U

2
f(R) sin2 θ.

Then (exercise)

D2Ψ =
U

2

[(

fRR − 2f

R2

)

sin2 θ

]

D4Ψ =
U

2

[(

∂2
RR − 2

R2

)2

f sin2 θ

]

= 0

So (

∂2
RR − 2

R2

)2

f = 0.

Assume f is a polynomial in R, and first find for what α

(

∂2
RR − 2

R2

)

Rα = 0.

We find α = 2 or −1, and now we solve

(

∂2
RR − 2

R2

)

f = AR2 +
B

R
,

to get

f =
A

10
R4 − B

2
R + CR2 +

D

R
.

The boundary condition at ∞ gives A = 0, C = 1. At R = a

f = −B

2
a + a2 +

D

2a
= 0

fR = −B

2
+ 2a − D

a2
= 0.
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We finally get

f =

(

R2 − 3

2
aR +

1

2

a3

R

)

,

and

uR = U

(

1 − 3a

2R
+

a3

2R3

)

cos θ,

uθ = U

(

−1 +
3a

4R
+

a3

4R3

)

sin θ.

We can also calculate the pressure as −∇p + µ∇2u = 0,

p = po −
3U

R2
a cos θ

To ensure consistency, we have to check that as R becomes large, |u · ∇u| ≪ |ν∇2u|
where Re = Ua/ν ≪ 1. Consider frame where u = −U at R = a, u = 0 as R → ∞.

Then u′
r ∼ Ua/R. So ∇2u′ ∼ Ua/R3 and |u · ∇u| ∼ U2a2/R3, so ok for large R.

Next we calculate the drag on the sphere.

We need the z component of traction

τ = (σRR, σRθ, 0)

on n = (1, 0, 0). So

τz = σRR cos θ − σRθ sin θ.

The total drag is

2π

∫

R=a

(σRR cos θ − σRθ sin θ) · a2 sin θ dθ.

Referring to Batchelor or the handout

σRR = −p + 2µ
∂uR

∂R
, σRθ = µ

[

R
∂

∂R

(
uθ

R

)

+
1

R

∂uR

∂θ

]

,
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but at R = a ∂uR

∂θ
= 0, and also ∂uR

∂R
= 0 (why?). So

σRR = −po + µ
3U

2a
cos θ, σRθ = −µ

3U

2a
sin θ.

Therefore

drag = 2π

∫ ((

−po + µ
3U

2a
cos θ

)

sin θ cos θ + µ
3U

2a
sin3 θ

)

dθa2

= 6πUaµ

(Stokes 1857).

eg for a solid sphere of density ρ′ falling in a fluid of density ρ,

drag = gravity − buoyancy

6πaUµ =
4

3
πρ′a3g − 4

3
πρa3g

=
4

3
π(ρ′ − ρ)a3g.

So, U = 2
9

a2

ν

(
ρ′

ρ
− 1

)

g.

We can define a drag coefficient cD by

F = cD
1

2
ρU2πa2.

Then cD = 12/Re, where Re = aU/ν. In experiments Re× cD increases - for large Re cD

becomes independent of Re.

Flow past a bubble

Suppose a bubble is essentially spherical due to surface tension forces. Then we still have

uR = 0 at R = a. We can’t use normal strss condition as surface tension is now the

dominant force. Ignoring viscosity inside the bubble, we have zero tangential stress at

R = a

σRθ|R=1 = µa
∂

∂R

(uθ

R

)
∣
∣
∣
∣
R=a

(

+
µ

a

∂uR

∂θ

∣
∣
∣
∣
R=a

︸ ︷︷ ︸

=0

)

.

So instead of uθ = 0 at R = a, we have ∂uθ

∂R
= uθ/a at R = a. This leads to a similar but

different flow field.
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It may be verified that

τz = 2π

∫

σRR cos θ · a2 sin θ dθ = 4πaµU,

(less than for a rigid sphere). So a bubble of density ρ′ ≪ ρ rising under gravity has

velocity

u = −1

3

a2

ν
g.

More generally, if a sphere has a density ρ′, contains fluid of viscosity µ′, then we can find

the Stokes flow inside the sphere, provided we satisfy matching conditions on tangential

velocity and stress at r = a. We get

u =
2

9
a2νg

(
ρ′

ρ
− 1

) (
µ + µ′

(2/3)µ + µ′

)

.

Flow past a cube

We have seen tha the cube having symmetry, the drag is parallel to U .

Consider the flow that is the Stokes flow solution outside the circumscribing sphere with

radius a = L
√

3 and zero inside the gap. This satisfies the boundary conditions on cube

plus ∇ · u = 0 etc.

Then the dissipation due to the actual solution FU <the dissipation due to any other

flow (min dissipation theorem). So FU < U6πµL
√

3U , so F < 6πµL
√

3U .

Similarly, consider the inscribed sphere,

and consider real flow to the cube boundaries and zero inside gap. By the same method

F > 6πµLU .

So for the cube, 6πµLU < F < 6πµL
√

3U .
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4 Lubrication Theory

4.1 Viscous flow in a narrow gap

Examples:

• oil in a bearing, h = b − a ≪ a

• drops on surface of large aspect ratio

• flow between close sheets - Hele-shaw cell

Basic principle: Re based on gap width/height Uh2/Lν ≪ 1 and variations in other

direction are slow ∂
∂x

, ∂
∂z

∼ 1/L ≪ 1/h ∼ ∂
∂y

because ∇ · u = 0, ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 so

v ∼ (h/L)(u,w) (ie flow almost horizontal.
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Ignore z-dependence (easy to generalize)

The x component of the NS equations is

ρ

(
∂u

∂t
+

(

u
∂

∂x
+ v

∂

∂y

)

u

)

= −∂p

∂x
+ µ

∂2u

∂y2
+ µ

∂2u

∂x2
︸︷︷︸

→0, O( h
L

)2

.

Ignore intertial term if U2/l ≪ νU/h2 or Uh2/Lν ≪ 1.

The y component is

0 ≃ −∂p

∂y
+ µ

∂2v

∂y2
⇒ ∂p

∂y
= 0

at leading order, so p = p(x).

So
∂2u

∂y2
=

1

µ

dp

dx
,

with u = U at y = 0, and u = 0 at y = h(x). So,

u =
1

2µ

(

−dp

dx

)

y(h(x) − y) + U
h(x) − y

h(x)
.

We can find the pressure from mass conservation

∫ h

0

u dy = Q (independent of x)

=
h3

12µ

(

−dp

dx

)

+
1

2
Uh.

So,
dp

dx
= −12µQ

h3
+

6µU

h2
.

If for example there is no net pressure drop along the gap then
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∫ L

0

dp

dx
dx = 0 ⇒ 2Q

∫ L

0

h−3dx = U

∫ L

0

h−2dx.

Example: the thrust bearing

d1 = d2 + αL and h = d1 − αx, say.

Then ∫ L

0

1

(d1 − αx)3
dx =

1

2α
(d−2

2 − d−2
1 ),

and ∫ L

0

1

(d1 − αx)2
dx =

1

α
(d−1

2 − d−1
1 ),

so
Q

U
=

1/d2 − 1/d1

1/d2
2 − 1/d2

1

=
d1d2

d1 + d2

.

We can calculate the maximum pressure. When dp
dx

= 0, 2Q/h3 = U/h2, so h = 2Q/U =

2d1d2/(d1 + d2). Then

p(x) = po + µ

∫ x

0

(

−12Q

h3
+

6U

h2

)

dx

= po +
µ

α

(
6Q

h2
− 6U

h

)

− 6Q

d2
1

+
6U

d1

.

(exercise)

p − po =
6µU

α(d1 + d2)

[

−d1d2

h2
+

d1 + d2

h
− 1

]

=
6µU

α

(d1 − h)(h − d2)

h2(d1 + d2)

∼ µU

αh

∼ µU

h2
L.

35



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

So the total force in the normal direction is

∫ L

0

(p − po) dx =
6µU

α(d1 + d2)

∫ L

0

(

−1 + h−1(d1 + d2) −
d1d2

h2

)

dx

=
6µU

α(d1 + d2)

[

−x − d1 + d2

α
ln h − d1d2

αh

]L

0

=
6µU

α(d1 + d2)

(

−L +
d1 + d2

α
ln

d1

d2

+
d1d2

α

[
1

d1

− 1

d2

])

∼ 6µU

α2(d1 + d2)
(d1d2)

(
1

d2

− 1

d1

)

∼ 6µU

α2

(d1 − d2)

(d1 + d2)
.

The tangential force it

µ

∫ L

0

∂u

∂y
dx = µ

(

− 1

2µ

dp

dx

)∫ L

0

h dx − µU

∫ L

0

1

h
dx.

These terms are both of order µU/α.
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4.2 Time dependent problems

Disc moving towards plane wall

Cirular disc, small gap is h(t)

Consider circular surface at r = x.

Mass flux out of sides is 2πxQ, where

Q(x) =

∫ h

0

udy = −ḣπx2

is the rate of change of volume. So

Q = − ḣx

2
.

Flow u(r, y) (radial), by same argument as above. We ignore v(r, y) cf u

0 = −∂p

∂r
+ µ

∂2u

∂y2

with u = 0 on y = 0, h. So

u =

(

− 1

µ

dp

dr

)

y(h − y), (p = p(r)).
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So ∫ h

0

u dy =

(

− 1

µ

dp

dr

)
h3

12
,

and (

− 1

µ

dp

dr

)
h3

12
= − ḣr

2
.

Then
dp

dr
=

6µrḣ

h3

with p = po at r = a gives

p =
3µḣ

h3
(r2 − a2) + po.

The total upward force is

2π

∫ a

0

(p − po)r dr =
2π · 3µḣ

h3

(
1

4
a4 − 1

2
a4

)

= −3πµ

2

a4ḣ

h3
.

Thus if the disc weighs Mg, we have

−3µπa4

2

ḣ

h3
= Mg.

Rearrange the constants

ḣ

h3
= −k

⇒ 1

2

(

− 1

h2
o

+
1

h2

)

= kt

⇒ h ∼ t−1/2 as t → ∞.
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Peristalsis

h = f(x − ct), k = f ′/f ≪ 1/h.

No imposed pressure gradient.

0 = − 1

µ

dp

dx
+

∂2u

∂y2
, u =

(

− 1

2µ

dp

dx

)

y(h − y)

Mass flux Q satisfies

ḣ +
∂Q

∂x
= 0, (5)

Then

Q(x) = − 1

µ

dp

dx

h3

12
. (6)

Integrating (6) over one period P of h,

∫ P

0

Q(x)

h3
dx = 0.

Let h = h(x − ct) = f(x − ct). Now ḣ = −cf ′ = −cfx = −Qx using equation (5). Then

Q = Qo + cf, Q̄ = Qo + cf̄ ,

and thus ∫ P

0

Qo

h3
dx +

∫ P

0

c

h2
dx = 0.

eg f = ho + h1 sin kx, f̄ = ho.

Qo

∫
dx

(ho + h1 sin kx)3
+ c

∫
dx

(ho + h1 sin kx)2
= 0
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is difficult to integrate. But suppose h1 ≪ h0, then

1

2π

∫
1

(ho + h1 sin kx)3
dx =

1

2πh3
o

∫ (

1 − 3h1

ho

sin kx +
6h2

1

h2
o

sin2 kx + . . .

)

dx

=
1

h3
o

(

1 +
3h2

i

h2
o

+ . . .

)

,

and
1

2π

∫
1

(ho + h1 sin kx)2
dx =

1

h2
o

(

1 +
3

2

h2
1

h2
o

+ . . .

)

.

So,

(Q̄ − cho)

h3
o

(

1 +
3h2

1

h2
o

+ . . .

)

+
c

h2
o

(

1 +
3

2

h2
1

h2
o

+ . . .

)

= 0

⇒ Q̄ =
3

2

ch2
1

ho

+ . . .

Note that Q̄ changes sign with c, but not with h1 as might have been predicted on

symmetry grounds.
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Spreading drop

Now include the effect of gravity. 2-D case

0 = −∂p

∂y
− ρg, p = po at y = h,

gives

p = po + ρg(h(x) − y)

(hydrostatic). So
∂p

∂x
= ρg

∂h

∂x
.

The horizontal component

0 = −g
∂h

∂x
+ ν

∂2u

∂y2
,

with u = 0 at y = 0 and ∂u
∂y

= 0 at y = h (no stress). So

u = − g

2ν

∂h

∂x
y(2h − y).

Q =

∫ h

0

u dy = − g

3ν
h3∂h

∂x
, and

∂h

∂t
+

∂Q

∂x
= 0.

So,
∂h

∂t
=

g

3ν
(h3hx)x,

non-linear diffusion equation cf ḣ = hxx.

This problem has solutions in a finite domain |x| < L(t), h(±L) = 0, V =
∫ L

−L
hdx =const.

Suppose L ∼ t−α, then h ∼ t−α, ∂
∂x

∼ 1/L ∼ t−α. So

(h3hx)x ∼ t−6α, ḣ ∼ t−1−α
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so α = 1/5. Try a solution of the form

h(x, t) = t−1/5f(η), η = Axt−1/5.

Edge of drop x = L, η = 1. L = (1/A)t−1/5.

ḣ = − 1

5t6/5

(

f + η
∂f

∂η

)

,

hx = Afη,

(h3hx)x = A2t−6/5(f 3fη)η.

So

− 1

5t6/5
(f + ηfη) =

g

3ν
A2t−6/5(f 3fη)η

(f 3fη)η = −k(ηf)η, k =
3ν

5gA2
.

So we have f 3fη = −kηf . Constant of integration zero: need to check OK with full

solution as fη → ∞ as η → 1. Solution with f = 0, η = 1

f =

(
3k

2

)1/3

(1 − η2)1/3

where V = 1
A

∫ 1

−1
fdη determines A in terms of V, ν, g.

V =
1

A

(
3

2
· 3ν

5gA2

)1/3 ∫ 1

−1

(1 − η2)1/3dη,
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5 Vorticity dynamics

5.1 Introduction

NS equations
∂u

∂t
+ u · ∇u = −∇p

ρ
+ F + ν∇2u, ∇ · u = 0.

Take the curl
∂ω

∂t
+ ∇× (ω × u) = ∇× F + ν∇2ω,

or
∂ω

∂t
+ u · ∇ω − ω · ∇u = ∇× F + ν∇2ω.

This is the vorticity equation. In the absence of body forces, vorticity is enganced by

stretching in the body of the fluid. It is created at the boundaries as flow has to make

boundary velocity to free-stress velocity.

Stretching: Dω

Dt
= ω · ∇u (no ν). We have Kelvin’s circulation theorem (ν = 0)

d

dt

∮

C

u · dl = 0

where C is a material curve

=

∮
Du

Dt
· dl +

∮

u · d

dt
(dl)

=

∫
Du

Dt
· dl +

∮

u · (dl · ∇u)

=

∫

−∇pdl

=

∫

dl · ∇(
1

2
u)

= 0
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if there are no body forces.

In particular if
∮

C
u · dl ≡ 0, then

∫

S
ω · dS = 0. Vorticity can not be created from

nothing. But action of viscosity at boundaries allows vorticity to appear.

Rayleigh problem

Recall u(y, t) = Uf(y/
√

2νt). So ∂u
∂y

∼ t−1/2, but vorticity distribution ∼ t1/2. Vorticity

is created at t = 0 and diffused into the interior.

Vorticity can be kept in the neighbourhood of the boundary by flow towards the boundary.

eq Flow towards a rigid boundary.

Far away from boundary, stagnation point flow

u = Ax, v = −Ay, Ψ ∼ −Axy,

but this does not satisfy the boundary condition at y = 0. Try a solution with Ψ ∝ x. In
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fact, let Ψ = −xg(y), with g = dg
dy

= 0 at y = 0 and g ∼ Ay as y → ∞, then

u = xg′,

v = −g.

Then

ω = g′′x, u · ∇ω = xg′g′′ − xg′′′

∇2ω = g′′′′x.

So

u · ∇ω = ν∇2ω,

gives

x(g′g′′ − gg′′′) = νg′′′′x

or

g′2 − gg′′ = νg′′′ + A2

(as g′ → +A, g′′ → 0). Can simplify this. Let y = (ν/A)1/2η,

g =
√

AνG(η),

⇒ G2
η − GGηη = Gηηη + 1,

G = Gη = 0 on η = 0, G → η as η → ∞.

Can’t solve this exactly, but numerical solution can be found

So there is a layer next to the wall of thickness ∼ (A/ν)−1/2 (so like Re−1/2), outside of

which the flow is like stagnation point flow, displaced by a distance .65(ν/A)1/2.
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Flow on a plane wall with suction

This is a simpler example of vorticity confinement.

Assume flow passes into wall (through a small hole for example) at speed v. So boundary

condition at y = 0 is u = 0, v = −W , and at y = a u = 0, v = −W . Suppose we seek

a steady flow field with u = u(y), v = −W and constant pressure gradient − dp
dx

= G

(independent of y). Clearly, the y-component on momentum equation is satisfied. The

x-component is

u · ∇u = u
∂u

∂x
+ v

∂u

∂y
= −W

∂u

∂y
.

So

− W
∂u

∂y
= G + ν

∂2u

∂y2
, u = 0, y = 0, a

⇒ ∂u

∂y
= − G

W
+ ce−Wy/ν

⇒ u = −Gy

W
+

νc

W

(
1 − e−Wy/ν

)
, u(0) = 0.

And so

0 = −Ga

W
+

νc

W

(
1 − e−Wy/ν

)

u = − G

W
(y − a) +

νc

W

(
e−Wa/ν − e−Wy/ν

)

and

u =
G

W
(a − y) +

Ga

W

(e−Wa/ν − e−Wy/ν)

(1 − e−Wa/ν)

∂u

∂y
= ω(y) = − G

W
+

Ga

ν

e−Wy/ν

(1 − e−Wa/ν)
.

Let Wa/ν = Re,

u =
G

Wa
(1 − y/a) +

Ga

W

(e−Re − e−Re(y/a))

(1 − e−Re)
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For small Re

u =
G

W
(a − y) +

Ga

W

(1 − Re + 1
2
Re2 − 1 + Re(y/a) − 1

2
Re2(y/a)2)

1 − 1 + Re − 1
2
Re2 + . . .

=
G

W
(a − y) +

Ga

W
(1 +

1

2
Re + . . .)(−1 + y/a +

1

2
Re(1 − y2/a2))

=
G

W
(a − y) +

Ga

W

[

−1 + y/a +
1

2
Re(1 − y2/a2) +

1

2
Re(−1 + y/a) + . . .

]

=
Ga2

2ν
(1 − y2/a2 − 1 + y/a + . . .).

This is the usual Poiseuille flow solution, correct as Re → 0.

For large Re

If Re ≫ 1, the second term is very small unless y/a ∼ 1/Re, e−Re ≪ 1. So if y = (a/Re)z

near y = 0, u ∼ (Ga/W )(1 − e−z). When y/a = O(1), the second term is negligible and

u ∼ (G/W )(a − y).

In the large Re case we get a boundary layer of thickness a/Re. Outside this, very small

dissipation.

Note: boundary layer only at y = 0. At y = a both diffusion and negative suction act to

move vorticity away from the wall.

5.2 Joint effect of stretching and diffusion on a straight line

vortex

Consider an axisymmetric flow of the form

u =
(

−αr

2
, uφ(r), αz

)

.

Certainly ∇ · u = 0. Then ω = ∇× u = (0, 0, ω(r)), check!
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The z-component of the vorticity equation is

∂ω

∂t
+ u · ∇ω = ω · ∇(uz) + ν∇2ω.

Other components, for example ωx,
∂ωx

∂t
+ u · ∇ωx − ν∇2ωx = ω · ∇(ux) = 0, as ux is not

a function of z. THus we can take ωx = 0 consitently. Similarly for ωy.

For ω, we get
∂ω

∂t
− αr

2

∂ω

∂r
= αω + ν

[
1

r

∂

∂r

(

r
∂ω

∂r

)]

General solution very difficult, but can find vortex tube solution in form ω = g(t)e−r2f(t),

∂

∂t

∫ ∞

0

ωr dr =

∫ ∞

0

α

(
r2

2

∂ω

∂r
+ rω

)

dr + ν

∫ ∞

0

∂

∂r

(
1

r

∂ω

∂r

)

dr.

The first term on the right hand side is [r2ω/2]∞0 = 0. The second term is
[
(1/r)∂ω

∂r

]∞
0

= 0,

if ∂ω
∂r

∝ r2 at 0. So total vortex strength is conserved

∫ ∞

0

ge−r2fr dr =
g

f

∫ ∞

0

e−x2

x dx,

independent of time. So g ∝ f (take g = f).

So ω = f(t)e−r2f(t) ⇒

ω̇ = (ḟ − r2fḟ)e−r2f

= α

[

f +
1

2
rf(−2rf)

]

e−r2f + ν(−4f 2 + 4r2f 3)e−r2f .

So there are two types of terms, which must separately balance.

ḟ = αf − 4νf 2

−r2fḟ = −r2f 2α + 4νr2f 3

}

these are the same.

So need to solve

ḟ = αf − 4νf 2.

Let p = 1/f , then ṗ = −ḟ/f = −αp + 4ν, and p = 4ν/α + poe
−αt. So

f =
1

4ν/α + poe−αt
=

eαt

(4ν/α)eαt + po

.
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So, as t → ∞, f → α/4ν.

The final state is

ω =
α

4ν
e−r2α/4ν ,

(constant arbitrary). So the size of the vortex tube ∝ (ν/α)1/2 ∼ Re−1/2.
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5.3 Hele-Shaw cell

Flow in a narrow gap if width h and uniform thickness, subject to imposed pressure

gradients.

∂

∂z
∼ 1

h
≫ ∂

∂x
,

∂

∂z
, u = (u, v, w), w ≪ u, v.

Then,

0 = −∇p + µ∇2u

0 = −∂p

∂z
+ µ

∂2w

∂z2
,

and

0 = −∂p

∂x
+ µ

∂2u

∂z2

0 = −∂p

∂y
+ µ

∂2v

∂z2
.

As before, at leading order ∂p
∂z

≈ 0, as w ≪ u, v and ∂p
∂z

≫ ∂p
∂x

, ∂p
∂y

. So,

p ≈ p(x, y)

0 = −∂p

∂x
+ µ

∂2u

∂z2
, u = 0, z = 0, h,

gives

u = − 1

2µ

∂p

∂x
z(1 − z).

Similarly,

v = − 1

2µ

∂p

∂y
z(1 − z).
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Thus,

ū =
1

h

∫ h

0

u dz = − 1

12µ
h2 ∂p

∂x

v̄ = − 1

12µ
h2 ∂p

∂y
.

So ∇× (ū, v̄, 0) = 0. ū is irrotational. Can be used to simulate irrotational flow past 2-d

bodies. But note that because p is single valued such flows will have no circulation.
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6 Flow at Large Reynolds Number

6.1 The Prandtl and Euler limits

ρ
Du

Dt
= −∇p [+F ] + µ∇2u.

What happens as µ → 0? We have seen that in the absence of boundaries, viscous forces

can be very small. But viscosity can be introduced at boundaries, even in the limit µ → 0

(Re → ∞). Euler equations are of lower order, can’t describe flows satisfying all boundary

conditions. If length scales become small as Re → ∞ then viscosity is always important,

even as Re → ∞: This is the Prandtl limit. (Euler limit is µ = 0).

At large Re, the viscosity appears in narrow layers. These are generally, though not

always, to be found at boundaries, so called boundary layers. These have a definite small

scale (the inner scale) that depends on Re. Outside the boundary layer the flow has

length scale independent of Re (often called the outer solution).

We can solve problems involving large Re using singular perturbation theory.

6.2 Regular and Singular Perturbations

Consider the problem for y = y(x)

y′′ + ǫy′ = 1, y(0) = y(1) = 0.

When ǫ = 0, y = (1/2)x(x− 1). This satisfies all boundary conditions as y′′ term is kept.

For ǫ 6= 0, can look for solution of the form

y = yo + ǫy1 + . . .

At O(ǫ0), y′′
o = 1. At O(ǫ), y′′

1 + y′
o = 0. In general y′′

i+1 + y′
i = 0. So

y1 = −
∫ x

0

yo(x
′) dx′ +

∫ 1

0

yodx′

etc, etc. So solution is a regular expansion in powers on ǫ.

Now consider

−ǫy′′ + y = x, y(0) = y(1) = 0.

This has the exact solution

y = x − sinh x/
√

ǫ

sinh 1/
√

ǫ
.
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Note the non-integer power of ǫ. Put ǫ = 0, then y = x satisfies only one boundary

condition. Near x = 1 we get a so called inner solution. Choose ξ = ǫ−1/2(x − 1). Then

equation becomes

−yξξ + y = 1 + ǫ−1/2ξ,

Then y = A sinh ξ + B cosh ξ + 1 + ǫ−1/2ξ. Ignoring the ǫ−1/2 term,

y = A sinh ξ + (1 − cosh ξ).

Now we find A from matching. ”The outer limit of the inner solution ∼ the inner limit

of the outer solution” (Van Dyke’s matching condition). The limit as x → 1 of outer

solution ∼ 1. The limit as ξ → −∞ of inner solution ∼ 1 − ((A + 1)/2)eξ. So A = −1.

Then for ξ = O(1), x − 1 = O(ǫ)

y ∼ − sinh

(
x − 1√

ǫ

)

+ 1 − cosh

(
x − 1√

ǫ

)

+ . . .

The actual solution is

y = x − sinh(x/
√

ǫ)

sinh(1/
√

ǫ)

∼ 1 − sinh ((x − 1)/
√

ǫ + 1/
√

ǫ)

sinh(1/
√

ǫ)

= 1 −
[
sinh((x − 1)/

√
ǫ) cosh(1/

√
ǫ)

sinh(1/
√

ǫ)
+

cosh((x − 1)/
√

ǫ) sinh(1/
√

ǫ)

sinh(1/
√

ǫ)

]

∼ 1 − sinh

(
x − 1√

ǫ

)

− cosh

(
x − 1√

ǫ

)

.

So we have a boundary layer of thickness ∼ √
ǫ as ǫ → 0. Quite often the boundary layer

∼ Re−1/2 at large Re.
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6.3 The boundary layer equation for steady flow

Prototype Problem: The Blasius boundary layer

We want to solve steady state NS equations for u = (u, v, w) with u = v = 0 at y = 0,

x > 0 and (u, v) → (U, 0) as y → ∞. We have the x-components

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν∇2u,

and the y-component

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν∇2v.

We imagine that there is a layer of thickness δ(x) in which u differs from uniform flow.

Suppose δ(x) ≪ x (verify later).

Then
∂2u

∂y2
∼ u

δ2
≫ ∂2u

∂x2
,

etc. u/x ∼ v/δ so v ≪ u. So

u
∂u

∂x
+ v

∂u

∂y
∼ u2

x
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(7)

u
∂v

∂x
+ v

∂v

∂y
∼ u2δ

x2
= −1

ρ

∂p

∂y
+ ν

∂2u

∂y2
. (8)

So if − ∂p
∂x

∼ p
x

balances other terms in (7) then −∂p
∂y

∼ p
δ

is unbalanced. So p does not
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vary across boundary layer. At the edge fo the layer, no pressure gradient at leading order

so can take ∂p
∂x

= 0 throughout.

The equation becomes

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
.

So |u∂u
∂x
| = |v ∂u

∂y
| ∼ U2/x ∼ νU/δ2. Then δ =

√

νx/U (or δ/x ∼ Re(x)−1/2, Re(x) =

U/νx).

Define a stream function ψ = Uδ(x)f(η), η = y/δ(x), u = Ufη.

ux = −Uδ′

δ
ηfηη

uy =
U

δ
fηη

uyy =
U

δ2
fηηη

v = −∂ψ

∂x

= −Uδ′f + Uδ′ηfη

So (

−U2δ′

δ
ηfηfηη

)

+

(

−U2δ′

δ
fηηf +

U2δ′

δ
ηfηfηη

)

=
νU

δ2
fηηη.

Or

−U2δ′

δ
ffηη =

νU

δ2
fηηη.

Thus we need δ′/δ ∼ νU/δ2. Let δ ∼ xm, then m/x ∼ νU/x2m, m = 1/2. Let δ =

(νx/U)1/2 as previously suggested. Then δ′/δ = 1/2x, 1/δ2 = U/νx. So

1

2
(−ηfηfηη − ffηη + ηfηf

′
ηη) = fηηη,

or

−1

2
ffηη = fηηη

with f = fη = 0 at η = 0 and fη → 1 as η → ∞. We can’t solve this!

The thickness of the boundary layer is provided by the quantity

δ =

∫ ∞

0

(

1 − u(y)

U

)

dy ≈ 1.72
(νx

U

)1/2

.
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More general boundary layers

Suppose the flow outside the boundary layer is (U(x), V (x)), 0). Then to a good approx-

imation outside the boundary layer we can ignore y-derivatives and get

U
dU

dx
= −1

ρ

∂p

∂x
.

The x-component of the momentum equations in the boundary layer is

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
,

and the y-component

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

∂2v

∂y2
.

As for the Blasius layer, v ≪ u, ∂
∂y

≫ ∂
∂x

, so p = p(x) in the boundary layer. Thus

x-component gives

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
= 0.

For simple form of U , eg U = cxm, coresponding to eg flow past a wedge

we can find a similarity solution of the form

ψ = U(x)δ(x)f(η/δ(x)).

So,

u =
∂ψ

∂y
= U(x)f ′(η), η = y/δ.
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In boundary layer equation

uux ∼ U2

x

vuy ∼ U2

x
.

So Uδ2/νx = 1, δ =
√

νx/U(x).

Let ψ = U(x)δ(x)f(η), η = y/δ(x), U = cxm, say. Then

u =
∂ψ

∂y
= U(x)f ′,

and

v = −∂ψ

∂x
= −cxm

(
mδ

x
+ δ′

)

f − cxmδ ·
(

−yδ′

δ2

)

f ′

= −cxm

[(
mδ

x
+ δ′

)

f + ηf ′δ′
]

.

So

uux + vuy = Uf ′
(

U ′f ′ − Uyδ′

δ2
f ′′

)

+
Uf ′′

δ

[

−U

(
mδ

x
+ δ′

)

f + Uηδ′f ′
]

=
mU2

x
f ′2 − δ′U2η

δ
f ′f ′′ − U2f ′′

δ

(
mδ

x
+ δ′

)

f +
U2δ′

δ
ηf ′f ′′.

δ ∝ xk,
√

x/U ∝ x(1−m)/2, so k = (1 − m)/2.

ux = U ′f 2
η − Uδ′

δ
ηfηη

uy =
U

δ
fηη

uyy =
U

δ2
fηηη

v = −∂ψ

∂x

= −(U ′δ + Uδ′)f + Uδ′ηfη
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So

(

UU ′f 2
η − U2δ′

δ
ηfηfηη

)

+

(

−U(U ′δ + Uδ′)

δ
fηηf +

U2δ′

δ
ηfηfηη

)

= UU ′ +
νU

δ2
fηηη.

Or

UU ′(f 2
η − ffηη) −

U2δ′

δ
ffηη = UU ′ +

νU

δ2
fηηη.

Or

mc2x2m−1(f 2
η − ffηη) − kc2x2m−1ffηη = c2mx2m−1 + c2x2m−1fηηη.

Or, cancelling

fηηη + m − mf 2
η +

1

2
(m + 1)ff ′′ = 0.

The Falkner - Skan equation (1930) boundary conditions f = fη = 0 at η = 0, fη → 1 as

η → ∞. m = 1, α = π/2 (already done), k = 0 boundary layer of constant thickness.

Problems with negative m

If U ∝ cxm, m < 0, then the external shear decelerates (pressure increases with x) and if

m = −0.0904 there is no stress at the wall at all fηη = 0. No sensible solutions (with flow

in one direction) can be found for m < −0.0904. For −0.0904 < m < 0 there are some

other solutions found, which reverse direction and are not observed. m < −1 no sensible

solutions at all.

Jeffery-Hamel Flow (in diverging channel)

Another example of failure of loundary layer theory to account for actual solution. (cf

example sheet question - different scaling.) Assume radial flow

ur =
1

r
F (φ), F (0) = Fo.
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R = αFo/ν and φ = αη. So −1 < η < 1, F = Fof(η). Substitutiong in as before, get

exact equation

fηηη + 2αRffη + 4α2fη = 0,

f(0) = 1, f(1) = f(−1) = 0. Suppose symmetric flow profile so fη(0) = 0,

f ′′ + αRf 2 + 4α2f + d = 0,

f ′(·) = 0,

f ′2 +
2αR

3
f 3 + 4α2f 2 + 2df − c = 0,

where c = f ′(1)2 ≥ 0. Since f ′(0) = 0,

0 =
2αR

3
+ 4α2 + 2d − c,

and so eliminating d, get

f ′2 = −2αR

3
f 3 − 4α2f 2 + c + f

(
2αR

3
+ 4α − c

)

,

= (1 − f)

[
2

3
αR(f 2 + f) + 2αf + c

]

= R(f).

Suppose we have a normal type of ”boundary layer” flow, with f ≤ 1 everywhere. Then

∫ 1

0

1√
R

df =

∫ 1

o

dη = 1 =

∫ 1

0

df
√

1 − f
√

2
3
αR(f 2 + f) + 2α2f + c

.

Since c ≥ 0 and 0 ≤ f ≤ 1,

1 <

∫ 1

0

df
√

f(1 − f 2)
√

2αR/3
,

or αR ≤ 10.31.

For larger αR flow must reverse directions.
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The momentum Jet - A solvable example. Flow through a nozzle

Assume that force applied at x = 0 to produce momentum flux F . So at x ≈ 0,

F = ρ

∫ ∞

−∞
u2 dy.

This is in fact a constant:

1

2ρ

dF

dx
=

∫ ∞

−∞
uux dy

= ν

∫ ∞

−∞
uyy dy

︸ ︷︷ ︸

=0

−
∫ ∞

−∞
vuy dy

= [vu]∞−∞
︸ ︷︷ ︸

=0

+

∫ ∞

−∞
uvy dy

= −
∫ ∞

−∞
uux dy

= 0.

So indeed F is constant, as is physically sensible. So as before ψ = U(x)δ(x)f(η),

η = x/δ, u = U(x)f ∗
η . So u2 ∼ U2, (1/ρ)F ∼ U2δ =const. Also, δ2 = νx/U , U ∼ xk,

k = (1/2)(1 − m), and 2m + k = 0, 2m + (1/2)(1 − m) = 0, m = −1/3, k = −2/3.

So F = F/ρ ∼ U2
√

νx/U ⇒ U = (F/νx)1/3. Similarly δ = (ν2x2/F)1/3. F-S equation

with no flow at ∞, m = −1/3,

fηηη +
1

3
f ′2 +

1

3
ff ′′ = 0,
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f odd in η (as u is even), f(0) = 0,
∫ ∞
−∞ f 2

η dη = 1 (exercise). And so

fηη +
1

3
(ffη) = 0

⇒ fη +
1

6
f 2 =

1

6
k2,

say.
df

k2 − f 2
=

η

6
,

so 1/k tanh−1 f/k = η/6 (const = 0), f = k tanh(ky/6). And

∫ ∞

−∞
f ′2 dη =

k5

36

∫ ∞

−∞
sech4 kη

6
dη = 1 =

2k3

9
.

f = (9/2)1/3 tanh
[
(9/2)1/3(1/6)η

]
, fη = k2/6 sinh2 kη.

Mass flux

M = ρ

∫ ∞

−∞
u dy = ρUδ

∫ ∞

−∞
fp

η dy = 2kρUδ ∝ x1/3,

increases with x due to entrainment of flow outside layer.

Effective Reynolds number of the momentum jet

u ∼ νx−1/3 δ ∼ x2/3.

So the effective Re ∝ uδ ∼ x1/3. In fact the maximum velocity times jet width can be de-

rived to be ∝ (Fx/ν2)1/3 (exercise). So effective Re increases with x and boundary layer

approximation gets better and better. Since Re increases, we may expect the possibility

of instability (as shear flow becomes unstable at sufficiently large Re). In fact, jets of this

kind are always tubulent for enough shear downstream.
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Note that the geometry is crucial. For a cylindrical momentum jet

F =

∫ ∞

0

u2r dr.

If the jet has thickness δ(x), then F ∼ U2(x)δ2(x). Can show (exercise) that in the

bounary layer approximate u = (u(x, t), v(x, t), 0),

uux + vur ≈
ν

r

∂

∂r

(

r
∂u

∂r

)

.

We can show that dF
dx

= 2
∫ ∞

0
uuxr dr = 0. So Uδ = F1/2 and as always U2/x ∼ νU/δ2. So

U = F/νx, δ = νx/F1/2. Jet with increases linearly. For boundary layer approximation

to be valid ν ≪ F1/2. Then we can find solution with u = (1/r)∂Ψ
∂r

, v = −(1/r)∂Ψ
∂x

,

Ψ = Uδ2f(η), u = F1/2/δ · (1/η)fη, and
∫ ∞
0

(1/η)f 2
η dη = 1. Hard to solve though.

6.4 Boundary layers at a free surface

Suppose we have a free surface that for some reason (eg large gravity, large surface tension)

may be considered flat.

Then at the surface

v = 0 and
∂u

∂y
= 0.

So ∂v
∂x

= 0, so consistent to take wz = ∂v
∂x

− ∂u
∂y

= 0. A flat surface with viscosity is

consistant with irrotational flow. So a boundary layer can only develop when the free

surface is curved.
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Since the boundary layer acts to maintain correct values of the stress (including ∂u
∂n

tan-

gential) rather than allowing the ut itself to match, we have a much weaker layer in

which the velocity canges by δ (boundary layer thickness) rather than O(1). How much

dissipation in such a boundary layer?

∫ ∞

0

(
∂u

∂y

)2

dy ∼ U2δ

as ∂u
∂y

is of order 1.

Compare with dissipation for a boundary layer at a rigid boundary where ubl is O(1), so
∂u
∂y

∼ U/δ,
∫ y

0

(
∂u

∂y

)2

dy ∼ U2

δ
,

which is much larger than mainstream dissipation.

Consider the use of a spherical bubble with radius a. Assume that Re = Ua/ν, but that

the surface tension forces to keep the bubble spherical. This works ok in water for bubble

sizes up to about 0.05 cm. Assume that the Re is large for these bubbles (true for the

larger ones).

Experimentally, we see that no boundary layer separation occurs and that we have

So in steady motion, if drag is D, then UD =energy dissipated in free stream (larger

than bubble). So calculate dissipation due to irrotational flow from potential theory for

irrotational flow past a sphere of radius a.

We have

φ = −1

2

Ua3

R2
cos θ.

So total dissipation is ∫

eijeij dV =

∫
∂ui

∂xj

∂ui

∂xj

dV

2π

∫ ∞

a

∫ π

0

R2 sin θ dθdR

(
∂2φ

∂xi∂xj

∂2φ

∂xi∂xj

)
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NB

∫
∂ui

∂xj

∂ui

∂xj

=

∫
∂

∂xj

(

ui
∂ui

∂xj

)

−
∫

ui
∂2ui

∂xj∂xj
︸ ︷︷ ︸

=0 as ∇2φ=0

=

∫

∇2

(
1

2
q2

)

dV, where q = |u|

=

∫

R=a

n · ∇
(

1

2
q2

)

dS

=

∫

R=a

− ∂

∂R

(
1

2
q2

)

dS

φ = −1

2

Ua3

R2
, uR =

Ua3

R2
cos θ,

1

2

Ua3

R2
sin θ.

So,

q2|R=a =
a3U2

R3

(

cos2 θ +
1

4
sin2 θ

)

,
∂

∂R
(q2)

∣
∣
∣
∣
R=a

= −3U2

a
(cos2 θ +

1

4
sin2 θ)

So,

6πa2

∫
U

a
sin θ(cos2 θ +

1

4
sin2 θ) dθ = 12πµaU2.

So D = 12πµaU . Note that this is three times the dissipation for stokes flow. We knew

it had to be larger as Stokes flow has minimum dissipation, by earlier result.

6.5 Boundary layer separation

We have seen how when the free stream velocity decelerates, the boundary layer equations

do not work well. Large Re flow behind a bluff body usually involves a wake with reversed

flow behind the body (often unsteady) - see handouts earlier in the term.

The tangential component of the free stream decreases sufficiently rapidly that boundary

layer can no longer be sustained. In fact for general incoming boundary layer, very little
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deceleration is needed for separation - special Stokes flow solution. Assume a particular

form of input and very gradual deceleration. Separation usually occurs near point of

maximum cross stream distance, or at a sharp edge.

Need a straight line here as otherwise flow would tend to zero at separation point and

that would lead to earlier separation. It seems probable that the point of separation is

point of zero wall friction, but not clear.

Actual flow field appears to be affected by history of the boundary layer - when separation

occurs global flow field changes, as does the pressure distribution. Using conventional

boundary layer theory, we get a singularity near the stagnation point.

Some progress was made in the last 30 years - need to look at mulit-boundary layer

theory (so called triple-deck theory). Outer scale - mainstream flow upper deck adverse

pressure gradient modified. Main deck - Re−1/2 - usual boundary layer scale. Lower deck

- Re−5/8(!) - local Reynolds number small. Can solve near stagntaion point.

Wakes behind bodies at large Re

Eventually the direct effect of body has disappeared so flow outside wake ∼ free shear

flow.
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Observed that the velocity in the wake does not differ much from the free stream velocity

U - this could not happen for a rigid body as u → 0 at boundary. So ignore down stream

diffusion compared with advection (y, z scales are small compared with x scale). Also,

uux ∼ UUx if |u − U | ≪ U . Then we can solve for the down stream flow (no imposed

pressure gradient) by investigating.

U
∂u

∂x
=

ν

r

∂

∂r

(

r
∂u

∂r

)

.

At large x, solution can be found to which observation indicate all solution tend, in form

U − u → QU

4πνx
e−Ur2/4νx,

where Q is a contant. NB 2π
∫ ∞

0
(U − u)r dr = Q, independent of x. So velocity deficit is

defined by Q and so presumably by the boundary conditions upstream. Q can be related

to the drag D on the body using the momentum theorem (Bathcelor p350).

There is a flux of momentum into the control surface which is related to the total force

on the body. So in fact D = ρUQ.
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7 Shear Flow Instabilities

7.1 Instability of a vortex sheet

Now for the time being, abandon viscosity and consider a tangential discontinuity in the

flow (allowed without diffusion).

u = ∓U/2, x ≥≤ 0

v = 0

p = po (uniform).

Most such shear layers are not planar, but solve this problem first - then consider this

a local solution. There is no vorticity for y 6= 0, but
∫

e
u · dx = Uδx = wδxδy. So

∫ 0+

0− w dy = U and so the vorticity is all contained in the interface.

In reality the interface diffuses due to vorticity, and we have seen this happen at a diffusive

rate so that thickness h ∝
√

νt. Ignore this for the moment and treat interface as a line -

check validity later. Now suppose the interface displaced to y = η(x, z, t), or that interface

satisfies F (x, t) = y − η(x, z, t) = 0. On each side of the interface, there is no vorticity

and so

y > 0 u =

(

−1

2
U +

∂φ1

∂x
,
∂φ1

∂y
,
∂φ1

∂z

)

y < 0 u =

(
1

2
U +

∂φ2

∂x
,
∂φ2

∂y
,
∂φ2

∂z

)

.

And ∇ · u = 0 ⇒ ∇2φ1 = ∇2φ2 = 0,

φ1 → 0, y → +∞
φ2 → 0, y → −∞

}

.

Need to apply boundary conditions at y = η.
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First condition: kinematic - particle at F = 0+ remains at F = 0+, particle at F = 0−

remains at F = 0−.

⇒ D1F

Dt
= (∂t + u1 · ∇)F = 0, F = 0+

D2F

Dt
= (∂t + u2 · ∇)F = 0, F = 0−

∂F

∂t
− 1

2
U

∂F

∂x
+ (∇φ1 · ∇)F = 0

− ηt +
1

2
Uηx +

∂φ1

∂y
−∇φ1 · ∇η = 0, at y = η+

Now suppose η is small, then perturbation velocity is small, of order η. So if we neglect

products of small quantities we get

ηt −
1

2
Uηx =

∂φ1

∂y
, at y = η+.

But
∂φ1

∂y

∣
∣
∣
∣
y=η

=
∂φ1

∂y

∣
∣
∣
∣
y=0

+ η
∂2φ1

∂y2

∣
∣
∣
∣
y=0

+ . . .

neglect all of the terms but the first. So we finally have a boundary condition at y = η+

∂η

∂t
− 1

2
U

∂η

∂x
=

∂φ1

∂y
+ O(η2).

Similarly at y = 0−

∂η

∂t
+

1

2
U

∂η

∂x
=

∂φ2

∂y
+ O(η2)

Next boundary condition: Bernoulli. Recall

∂φ

∂t
+

1

2
|u|2 +

p

ρ
= const,

(∂u
∂t

+ u · ∇u = −∇p/ρ). So at y = η+

∂φ1

∂t
+

1

2

(

−U

2
+

∂φ1

∂x

)2

︸ ︷︷ ︸

U2

4
︸︷︷︸
const

−2U ∂φ
∂x

+

(
∂φ

∂x

)2

︸ ︷︷ ︸
small

+
1

2

∂φ

∂y
+

p

ρ
= const.
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So neglecting small terms

∂φ1

∂t
− U

2

∂φ1

∂x
= pi at y = η+,

and so at y = 0+

∂φ1

∂t
− U

2

∂φ1

∂x
=

p1

ρ
+ terms of order η2.

Similarly at y = 0−

∂φ2

∂t
+

U

2

∂φ2

∂x
=

p2

ρ
.

And p1 = p2 (no surface tension etc). Can generalize this later.

So the problem to solve is

∇2φ1 = ∇2φ2 = 0

(∂t −
U

2
∂x)η =

∂φ1

∂y

∣
∣
∣
∣
y=0

, (∂t −
U

2
∂x)η =

∂φ2

∂y

∣
∣
∣
∣
y=0

.

So (

∂t −
U

2
∂x

)

φ1

∣
∣
∣
∣
y=0

=

(

∂t −
U

2
∂x

)

φ2

∣
∣
∣
∣
y=0

and

φ1 → 0, y → ∞
φ2 → 0, y → −∞.

This is a linear problem. Seek a seperable solution of the form

η = ℜη̂eσt+ikx+imz.

Then we can look for φ1, φ2 ∝ eσt+ikx+imz too. eg φ1 = ℜφ̂1(y)eσt+ikx+imz.

∇φ1 = 0 ⇒
(

d2φ̂1

dy2
− (k2 + m2)φ̂1

)

eσt+ikx+imz = 0.

So φ̂1 = A1e
−γy as φ1 → 0, y → +∞. Similarly

d2φ̂2

dy2
− γ2φ̂2 = 0, φ̂2 = A2e

γy.
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Substitute in to get

(

σ − iUk

2

)

η̂ = −γA1

(

σ +
iUk

2

)

η̂ = γA2

(

σ − iUk

2

)

A1 =

(

σ +
iUk

2

)

A2.

(

σ − iUk

2

)2

η̂ = −γ

(

σ − iUk

2

)

A1

(

σ − iUk

2

)2

η̂ = γ

(

σ +
iUk

2

)

A2,

or (

σ +
iUk

2

)2

+

(

σ +
iUk

2

)2

= 0,

so σ2 = U2k2/4, σ = ±Uk/2. Then

η =
(
η̂1e

Ukt/2 + η̂2e
−Ukt/2

)
eikx+imz,

where η̂1 and η̂2 are determined by the initial consitions

η(0) = (η̂1 + η̂2)e
( ), η̇(0) =

Uk

2
(η̂1 = η̂2)e

( ).

7.2 Ultra-violet catastrophe - how to remove

Clearly all disturbances grow - largest growth rate for smallest wavelength! - utraviolet

catastrophe. This is a highly singular situation, and we expect that other physcial ef-

fects will resolve the situation. Clearly viscosity has to play a role - see later. Another

mechanism that can stabilize short wavelengths is surface tension. If the two fluids are

different, then there is a pressure discontinuity across the surface proportional to the local

curvature. Consider a simple case where y = η(x, t) (no z-dependence). Then if η is small

the curvature ∼ ηxx.

Effects of surface tension between two fluids

For simplicity, assume same density, ρ1 = ρ2. The pressure difference across curved

boundary propotional to curvature. (assume now m = 0, so 2-d disturbance η = η(x, t).)
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ρ1 − ρ2 = γk. For y = η(x, t), with η small, k ∼ ηxx. So

ρ

(
∂φi

∂t
− U

2

∂φ

∂x

)

= p1 = ρ

(
∂φ2

∂t
+

U

2

∂φ2

∂x

)

+ γηxx.

So

(

σ − iUk

2

)

η̂ = −|k|A1

(

σ +
iUk

2

)

η̂ = |k|A2

(

σ − iUk

2

)

A1 −
(

σ +
iUk

2

)

A2 = −γk2

ρ
.

So (

σ − iUk

2

)2

+

(

σ +
iUk

2

)2

= −T |k|3,

where T = γ/ρ, or

2σ2 − U2k2

2
= −T |k|3.

For sufficiently large |k| we find that σ imaginary - so these modes are stable (capillary

waves). We can also consider effects of viscosity, and perform a boundary layer analysis

for a very thin sheet, in presence of viscosity. This gives a modified dispersion relation

for the growing mode.

σ+ =
1

2

(√
k4ν2 + U2k2 − k2ν

)

.

All modes are now unstable, but this too has a maximum at finite k, real for all k.

When there is a mode of maximum growth rate, a general initial condition has all Fourier

modes, and this mode will grow most rapidly. So the growing disturbance will have a

definite scale corresponding to this wavenumber.
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Effect of viscosity when layer has a finite thickness d (∝
√

νt)

Then disturbances with kd ≪ 1 will see discontinuous shear layer. For inviscid theory to

be relevant, we must have rate of growth of disturbance with kd ≪ 1 faster than growth

rate of inteface
ḋ

d
=

1

2t
∼ ν

2d2
.

So all is ok if Uk ≫ ν/d2 or Ukd2/ν ≫ 1. So if kd ≪ 1, we need Re = Ud2/ν ≫ 1/(kd).

Gets better and better as d increases.

7.3 Shear flow and buoyancy

2 Fluids of different densities ρ1, ρ2.

Ignore surface tension. We now have a hydrostatic pressure gradient. So Bernoulli gives

∂φ

∂t
+

1

2
|u|2 + gz +

p

ρ
= const.

So at y = η+

∂φ1

∂t
− 1

2
U

∂φ1

∂x
+ gη +

p1

ρ1

= const,

and at y = η−

∂φ2

∂t
+

1

2
U

∂φ2

∂x
+ gη +

p2

ρ2

= const.
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In the absence of gravity, we just have

ρ1

(
∂φ1

∂t
− U

2

∂φ2

∂x

)

= ρ2

(
∂φ2

∂t
+

U

2

∂φ2

∂x

)

ρ1

(

σ − iUk

2

)

A1 = ρ2

(

σ +
iUk

2

)

A2

ρ1

(

σ − iUk

2

)2

+ ρ2

(

σ +
iUk

2

)2

= 0

(ρ1 + ρ2)

(

σ2 − U2k2

4

)

+ (ρ2 − ρ1)iUkσ = 0

And p is continuous (no surface tension). Retain gη term as linear when movint to y = 0±.

So (assume m = 0 again)

(

σ − iUk

2

)

η̂ = −|k|A1

(

σ +
iUk

2

)

η̂ = |k|A2

ρ1

[(

σ − iUk

2

)

|k|A1 + |k|gη̂

]

− ρ2

[(

σ +
iUk

2

)

|k|A2 + |k|gη̂

]

= 0

ρ1

[

−
(

σ − iUk

2

)2

η̂ + |k|gη̂

]

− ρ2

[(

σ +
iUk

2

)2

η̂ + |k|hη̂

]

= 0

− (ρ1 + ρ2)

(

σ2 − U2k2

4

)

+ (ρ1 − ρ2)iUkσ + (ρ1 − ρ2)|k|g = 0

σ2 − U2k2

4
= −ρ2 − ρ1

ρ1 + ρ2

ikUσ − ρ2 − ρ2

ρ1 + ρ2

|k|g

Write σ = σR + iσI , ∆ = (ρ2 − ρ1)/(ρ2 + ρ1).

σ2
R − σ2

I −
U2k2

4
= ∆kUσI − ∆|k|g

2σRσI = −∆kUσR

σ2
R = −∆2k2U2

4
+

U2k2

4
− ∆|k|g

So if ∆ > 0, long waves (small k) are stabilized.
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