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4.2 Flow past a sphere at low Reynolds number

Uniform flow U past a fixed rigid sphere, radius a. There are several methods, all of
which have heavy algebra somewhere.

4.2.1 Method 1

The linearity of the Stokes equations means that u(x) must be linear in U. Further, the
problem has spherical symmetry about the centre of the sphere, which is taken as the
origin. The velocity and pressure fields must therefore take the forms

u(x) = Uf(r) + x(U·x)g(r),

p(x) = µ(U·x)h(r),

where r = |x|, and f , g and h are functions of scalar r to be determined.
Now

∂ui

∂xj

= Uixjf
′/r + δijUnxng + xiUjg + xixjUnxng

′/r.

Contracting i with j, we have the incompressibility condition

0 = ∇·u = Unxn(f
′/r + 4g + rg′).

Differentiating again

µ∇2ui = µUi (f
′′ + 2f ′/r + 2g) + µxiUnxn (g

′′ + 6g′/r)

∇ip(x) = µUih + µxiUnxnh
′/r

Hence the governing equations give

f ′/r + 4g + rg′ = 0, f ′′ + 2f ′/r + 2g = h and g′′ + 6g′/r = h′/r.

Eliminating h and then f yields

r2g′′′ + 11rg′′ + 24g′ = 0.

This differential equation is homogeneous in r so that there are solutions of the form g =
rα. Substituting, one finds α = 0, −3 and −5, with associated f = −(α+4)rα+2/(α+2)
and h = −(α+ 5)(α+ 2)rα. Hence the general solution of the assumed form linear in U

is

u(x) = U
(

−2Ar2 + B + Cr−1 − 1
3
Dr−3

)

+ x(U·x)
(

A+ Cr−3 +Dr−5
)

,

p(x) = µ(U·x)
(

−10A+ 2Cr−3
)

.

We shall need the stress exerted across a spherical surface with unit normal n = x/r

σ ·n = U
(

−3Ar + 2Dr−4
)

+ x(U·x)
(

9Ar−1 − 6Cr−4 − 6Dr−6
)

Applying the boundary conditions on the rigid sphere and for the far field, we find
the coefficients

A = 0, B = 1, C = −3
4
a and D = 3

4
a3,

so

u = U

(

1 −
3a

4r
−

a3

4r3

)

+ x(U·x)

(

−
3a

4r3
+

3a3

4r5

)

,
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p = −
3aµU·x

2r3
and σ ·n|r=a =

3µ

2a
U.

Hence the drag on the sphere is
∫

r=a
σ ·n dS = 4πa2

3µ

2a
U = 6πµaU.

4.2.2 Method 2

Use a Stokes streamfunction for the axisymmetric flow

ur =
1

r2 sin θ

∂Ψ

∂θ
and uθ = −

1

r sin θ

∂Ψ

∂r
.

The vorticity equation (curl of the momentum equation, to eliminate the pressure) is
then at low Reynolds numbers

D2D2Ψ = 0 where D2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(

1

sin θ

∂

∂θ

)

.

The uniform flow at infinity has Ψ = 1
2
Ur2 sin2 θ, so one tries Ψ = F (r) sin2 θ, and finds

F = Ar4 + Br2 + Cr +D/r.

4.2.3 Method 3

One can show that the general solution of the Stokes equation can be expressed in terms
of a vector harmonic function φ(x) (i.e. ∇2φ = 0)

u = 2φ−∇(x·φ) p = −2µ∇·φ.

σij = 2µ

(

δij
∂φn

∂xn

− xk

∂2φk

∂xi∂xj

)

The fundamental harmonic functions (solid spherical harmonics) are denoted Φ−(1+n)

and proportional to the nth gradient of 1/r: Φ−1 = 1/r (scalar), Φ−2 = x/r3 (vector),
Φ−3 = 1/r3 − 3xx/r5 (2nd order tensor) etc.

Linearity and spherical symmetry then give

φ = AU
1

r
+ BU·∇∇

1

r
or φ = CUΦ−1 + DΦ−3 ·U,

with coefficients to be determined by applying the boundary conditions.

4.2.4 Method 4

The pressure and vorticity are harmonic functions. Using linearity and spherical symme-
try, they must take the form

p = µAU·x/r3 and ∇∧ u = BU ∧ x/r3.

The final step to u is tedious.

Note

Velocity is true vector. Vorticity/rotation are pseudo vectors. Sometimes linearity is
not sufficient, you need to pay attention to the true vs. pseudo nature of the vectors
involved. E.g. rotation of a sphere: u (true vector) linear in Ω (pseudo vector)

→ u = Ω× x f(r)
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