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Mathematical Tripos Part II Michaelmas 2024

D23 Fluid Dynamics II Grae Worster

mgw1@cam.ac.uk

Example Sheet 1

Every answer should include at least one relevant sketch

1. Consider the steady two-dimensional inviscid flow

u = (αx− 1

2
ωy,−αy + 1

2
ωx).

Confirm that this flow is incompressible and find its streamfunction. Show that the streamlines are
elliptic or hyperbolic according to whether |α|<>

1

2
|ω|.

Evaluate the inertia ρu · ∇u and find a pressure field to balance it. Discuss the minimal or maximal
nature of the pressure at the origin in terms of the streamline pattern.

2. Show that a steady shear flow u = [γy, 0, 0], where γ is constant, is the sum of a planar extensional
flow (whose principal axes should be determined) and a solid-body rotation. Show that the Navier-Stokes
equations are satisfied if the pressure is uniform and the body force vanishes. If this shear is maintained
in a fluid of dynamic viscosity µ flowing between two plates at y = 0 and y = h, write down the full
stress tensor and use it explicitly to find the forces exerted by the fluid on each of the plates. Calculate
the rate of work per unit area needed to be exerted on the top plate to maintain the flow and show that
it is equal to the rate of dissipation per unit area internal to the flow.
[Pay close attention to the direction of the normal vectors on each plate.]

3. Show that, for the flow u of an incompressible, viscous fluid in a region V enclosed by a stationary
rigid boundary,

∫

V

∂ui

∂xj

∂uj

∂xi
dV = 0.

Hence show that the total rate of dissipation of energy D ≡ 2µ

∫

V

eijeij dV can be written as

D = µ

∫

V

ω2 dV, where ω = ∇× u.

[It follows that if the flow is irrotational then there is no dissipation. Why?]

4. A layer of incompressible fluid of density ρ and dynamic viscosity µ flows steadily down a plane
inclined at an angle θ to the horizontal, forming a uniform layer of thickness h parallel to the plane. A
second layer of fluid, of uniform thickness αh, viscosity βµ and density ρ flows steadily on top of the first
layer. Using Cartesian coordinates perpendicular and parallel to the plane, write down the equations
of motion in each layer, the boundary conditions on the plane and on the top free surface, and the
boundary conditions at the interface between the two layers.

Find the pressure, shear-stress and velocity fields in each layer. Why does the velocity profile in the
bottom layer depend on α but not β?

Show that the volume flux (per unit cross-slope width) is

ρgh3 sin θ

3µ

(

1 +
3α

2

)

and
ρg(αh)3 sin θ

3βµ

(

1 +
3β

2

1 + 2α

α2

)

in the lower and upper layers respectively. Discuss the limits (a) α ≪ 1, (b) β ≪ 1.
[Recall from Fluids I that the flux for a single layer of thickness h is ρgh3 sin θ/3µ.]

1



C
op

yr
ig

ht
 ©

 2
02

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

5. An incompressible fluid of dynamic viscosity µ flows steadily through a cylindrical tube parallel
to the z-axis with velocity u = [0, 0, w(x, y)], under a uniform pressure gradient G = −dp/dz. Show that
the Navier-Stokes equations with no body force are satisfied provided

∇2w = −G/µ,

and state the appropriate boundary conditions.
Find w for a tube with an elliptical cross-section with semi-axes a and b. [Hint: consider the

function f(x, y) =
(

1− x2/a2 − y2/b2
)

and recall the uniqueness of the solution to Poisson’s equation
with Dirichlet boundary conditions.] Show that the volume flux (i.e. the volume of fluid passing through
any section of the tube per unit time) is given by

Q =
πa3b3G

4(a2 + b2)µ
·

Now consider the circular case with a = b (so-called Poiseuille flow). Show that the viscous stress
on the boundary, σrz = µ∂w/∂r, exerts a force that exactly balances the pressure difference exerted
across the ends. Further, calculate the dissipation within the tube and show that it is equal to the rate
of working against the pressure difference across the ends.

6. Viscous fluid flows with steady velocity u = [0, v(r), 0] between two infinitely-long, coaxial cylin-
ders r = a and b (> a). The inner cylinder rotates with steady angular velocity Ω about its axis, while
the outer cylinder is at rest. The pressure varies only in the radial direction. Using the Navier-Stokes
equations in cylindrical polar coordinates (see e.g. Appendix 2 of Batchelor or Wikipedia), show that

v(r) = Ar +B/r,

where the constants A and B are to be determined. Calculate the torque per unit length that must be
applied to the inner cylinder to maintain the motion; check the dimensions and the sign of your result.
[In polar coordinates (r, φ), the component erφ of the strain-rate tensor is given by 2erφ = r∂(v/r)/∂r
for this flow.]

7. The plane rigid boundary of a semi-infinite domain of a viscous fluid oscillates in its own plane
with velocity U0 cosωt. The fluid is at rest at infinity. Find the velocity field. [Hint: use complex
notation by writing cosωt as the real part of eiωt.] Show that the time-averaged rate of dissipation of
energy in the fluid is

1

2
ρU2

0

(

1

2
νω

)1/2

per unit area of the boundary. Verify that this is equal to the time average of the rate of work of the
boundary on the fluid (per unit area).

8. A viscous fluid of kinematic viscosity ν and density ρ is confined between a fixed plate at y = h
and a plate at y = 0 whose velocity is [U0 cosωt, 0, 0], where U0 is a constant. There is no body force
and the pressure is independent of x. Explain the physical significance of the dimensionless number
S = ωh2/ν.

Assuming that the flow remains time-periodic and unidirectional, find expressions for the flow profile
and the time-average rate of working Φ per unit area by the plates on the fluid. [Hint: use complex
notation and the functions sinh and cosh].

Sketch the velocity profile and evaluate Φ in the limits S ≪ 1 and S → ∞, and explain why in these
limits Φ becomes independent of ω and h respectively.

9. Suppose that the tube in question 5 has as its cross-section the sector of a circle r < a, |θ| < β in
plane polar coordinates (r, θ). Show that the momentum equation has solution

w(r, θ) =
Gr2

4µ

(

cos 2θ

cos 2β
− 1

)

+

∞
∑

n=0

Anr
λn cosλnθ,

where λn = (2n+ 1)π/2β and the coefficients An are to be found. Determine the asymptotic behaviour

of the flow near r = 0 [Hint: distinguish the cases β <
>π/4]. Under what circumstances is the flow near

r = 0 independent of the boundary r = a?
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