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Mathematical Tripos Part II Michaelmas 2024

D23 Fluid Dynamics II Grae Worster

mgw1@cam.ac.uk

Example Sheet 2

Every answer should include at least one relevant sketch

1. Show that in an unbounded Stokes flow at rest at infinity, two identical spheres, arbitrarily aligned,
fall under gravity at constant separation, i.e. neither separating nor coming closer together.

2. An external force is applied at the centre of a cube in a direction normal to one flat surface. Show
that in an unbounded Stokes flow, the cube moves in the direction of the applied force without rotating.
Using linearity and rotational symmetry, deduce that, in all orientations, the terminal velocity of a cube
of uniform density sedimenting in a fluid is vertical. Furthermore, using reflectional symmetry, show
that it falls with no rotation. Using similar arguments, show that when the cube simply rotates about
an axis through its centre, the resisting hydrodynamic torque is parallel to the angular velocity and the
hydrodynamic force is zero.

Show that the same applies to a regular tetrahedron. How about an ellipsoid?

3. If the strain-rate tensor e(x) vanishes throughout a connected region, show that the flow is rigid body
motion. [Hint: take the curl of e(x) to show that the vorticity tensor is uniform (constant) throughout
the region.]

Show that if the surface stress is specified on a bounding surface then the Stokes flow in the interior is
unique to within the addition of a rigid body motion. What condition(s) must the prescribed surface
stress satisfy for there to be a Stokes flow in the interior?
[Hint: in the absence of body forces the Stokes equation can be written ∂σij/∂xj = 0.]

4. If A(x) is a vector harmonic function, i.e. ∇2A = 0, show that the flow

u = 2A−∇(A · x), p = −2µ∇ ·A

is incompressible and satisfies the Stokes equation with no body force. Calculate the stress tensor.
For a sphere of radius a translating at velocity V through a fluid that is otherwise at rest, explain why
the harmonic function takes the form

A = αaV
1

r
+ βa3(V · ∇)∇1

r
.

[Hint: How many vector harmonic functions that are linear in V can you construct using the fundamental
harmonic solution 1/r and its derivatives?]
Find the values of the constants α and β.

5. Consider an unbounded Stokes flow outside a rigid sphere of radius a rotating with angular velocity
Ω. Show that the pressure gradient is zero. Then derive the velocity field as

u(x) = Ω× x
a3

r3
·

[Hint: How many true vector harmonic functions, u, can you construct using the fundamental harmonic
solution 1/r and its derivatives that are linear in the pseudo vector Ω?]
Show that the torque exerted on the sphere by the flow is −8πµa3Ω.
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6. Consider a spherical bubble of radius a in a uniform flow U. Recall that the expression obtained in
lectures for the Stokes flow outside a sphere is of the form

u(x) = Uf(r) + x(U · x)g(r).

Applying boundary conditions on r = a of no normal component of velocity and no tangential component
of surface traction (i.e. no tangential stress), find the flow u(x). Show that the drag force is 4πµaU.
[You may use results from the handout on Stokes flow past a sphere.]

7. Using the minimum dissipation theorem by stating carefully the flows you are comparing and exploit-
ing the result from question 5, find upper and lower bounds for the hydrodynamic torque on a regular
tetrahedron rotating about its centre in a viscous fluid.
[Hint: the radius of the inscribed sphere for a regular tetrahedron of edge length a is a/

√
24 while that

of the circumscribed sphere is
√
6a/4.]

8. An incompressible, viscous fluid is contained in the two-dimensional region −α < θ < α between
two rigid hinged plates rotating with equal and opposite angular velocity of magnitude ω. Therefore, in
plane polar coordinates, the velocity components on the hinged plates satisfy

ur = 0, uθ = ∓ωr on θ = ±α.

Neglecting all inertial forces, show that a solution to the Stokes problem is of the form

ψ = 1

2
ωr2g(θ)

(why?) and find the function g(θ). Deduce the pressure field p(r, θ). Is the logarithmic divergence of
the pressure an issue? What is the physical interpretation of the singularity in g?

9. An incompressible, viscous fluid occupies the region 0 < θ < α, 0 < r <∞ in plane-polar coordinates
(r, θ). It is bounded by a stationary, rigid plate at θ = α and a rigid plate at θ = 0 that translates with
constant velocity U in its own plane in the negative r direction. Calculate the resulting Stokes flow of
the fluid. Calculate the stresses on each of the plates and comment on the external forces required to
sustain the flow.

10. A spherical annulus of incompressible viscous liquid of volume V occupies the region R1(t) < r <
R2(t) between two free surfaces on the outside of which pressures (i.e. normal stresses) P1(t) and P2(t)
are applied. The resulting flow is spherically symmetric. Neglecting inertia, gravity and surface tension,
show that

d

dt

(

R3

1

)

=
π(P1 − P2)

µV
R3

1

(

R3

1
+

3V

4π

)

.

[Hints: ur = f(t)/r2 (why?) and σrr = −p + 2µ∂ur/∂r in this flow. Also, be careful to distinguish
between pressure and normal stresses.]

Show that if P1 − P2 is maintained positive and constant, then R1 becomes infinite in a finite time.
What happens if P1 − P2 is maintained negative and constant?
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