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Mathematical Tripos Part II Michaelmas 2024

D23 Fluid Dynamics II Grae Worster

mgw1@cam.ac.uk

Example Sheet 3

Every answer should include at least one relevant sketch

1. A rigid sphere of radius a falls under gravity through a Newtonian fluid of viscosity µ towards a
horizontal rigid plane. Use lubrication theory to show that, when the minimum gap h0 is very small,
the speed of approach of the sphere is

h0W/6πµa2,

where W is the weight of the sphere corrected for buoyancy.

2. A Newtonian fluid of viscosity µ is forced by a pressure difference ∆p through the narrow gap
between two parallel circular cylinders of radius a with axes 2a + b apart. Show that, provided b ≪ a
and ρb3∆p ≪ µ2a, the volume flux through the gap per unit length along the axis of the cylinders is
approximately

2b5/2∆p

9πa1/2µ
,

when the cylinders are fixed.

Show that when the two cylinders rotate with angular velocities Ω1 and Ω2 in opposite directions (i.e. one
rotates Ω1ez while the other one −Ω2ez where ez is the unit vector along the axis of the cylinder), the
change in the volume flux is given by

2

3
ab(Ω1 +Ω2).

3. A viscous fluid coats the outer surface of a cylinder of radius a which rotates with angular velocity Ω
about its axis, which is horizontal. The angle θ is measured from the horizontal on the rising side. Show
that the volume flux per unit length Q(θ, t) is related to the thickness h(θ, t) ≪ a of the fluid layer by

Q = Ωah− g

3ν
h3 cos θ,

and deduce an evolution equation for h(θ, t).
Consider now the possibility of a steady state with Q = const, h = h(θ). Show that a steady solution
with h(θ) continuous and 2π-periodic exists only if

Ωa > (9Q2g/4ν)1/3.

[Hint: Consider a graph of cos θ as a function of h.]

4. An axisymmetric pool of viscous fluid of volume V spreads on a horizontal surface as a viscous
gravity current of height h(r, t). Assuming that the drop has become sufficiently thin that inertia can be
neglected, derive the partial differential equation governing the evolution of h. What conditions should
be applied to the solution of this equation?
Use scaling to determine how the radial extent rN (t) of the pool of fluid varies with time. Use the same
scaling to determine approximately when the current can be treated as a thin-film flow. Look for a
similarity solution to the equation to determine the radial extent rN (t) of the current completely.

5. A Newtonian fluid with dynamic viscosity µ flows in a shallow container with a free surface at z = 0.
Using cartesian coordinates (x, y, z), the fluid velocity is denoted (ux, uy, uz) ≡ (uH , uz). The base of
the container is rigid, and is located at z = −h(x, y). An external horizontal stress S(x, y) is applied
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at the free surface. Gravity may be neglected. Using lubrication theory, show that the two-dimensional

horizontal volume flux q(x, y) ≡
∫ 0

−h
uHdz satisfies the equations

∇ · q = 0, µq = −1

3
h3∇p+

1

2
h2S,

where p(x, y) is the pressure. Find also an expression for the surface velocity u0(x, y) ≡ uH(x, y, 0) in
terms of S, q and h.

6. The walls of a straight two-dimensional channel are porous and separated by a distance d. A
Newtonian fluid of viscosity µ is driven along the channel by a pressure gradient G = −∂p/∂x. At the
same time, suction is applied to one wall of the channel providing a cross flow with uniform transverse
component of velocity V > 0, with fluid being supplied at this rate to the other wall. Calculate the
steady velocity and vorticity distributions in the fluid. Sketch them (i) when V d/ν ≪ 1 and (ii) when
V d/ν ≫ 1.

7. A Newtonian fluid of viscosity µ fills an annulus a < r < b between a long stationary cylinder r = b
and a long cylinder r = a rotating at angular velocity Ω. Looking up the components of the Navier-Stokes
equation in cylindrical coordinates, find the axisymmetric velocity field, ignoring end effects.
Suppose now that the two cylinders are porous, and a pressure difference is applied so that there is a
radial flow −V a/r in the fluid annulus. Find an expression for the new steady flow around the cylinder
when V a/ν 6= 2 . Comment on the flow structure when V a/ν ≫ 1.
Find the torque (per unit length along the cylinder axis) required to maintain the motion, and show
that it is independent of b and of the viscosity in the limit V a/ν → ∞. [Check the dimensions and sign
of your result.]

8. Starting from the Navier-Stokes equations for incompressible viscous flow with conservative forces,
obtain the vorticity equation

Dω

Dt
= ω ·∇u+ ν∇2

ω.

Interpret the terms in the equation.
At time t = 0 a line vortex is created along the z-axis, with the same circulation Γ around the axis at
each z. The fluid is viscous and incompressible, and for t > 0 has only an azimuthal velocity denoted
v. Show that there is a similarity solution of the form vr/Γ = f(η), where r = (x2 + y2)1/2 and η is a
suitable similarity variable. Furthermore, show that all conditions are satisfied by

f(η) = 1
2π (1− e−η2

), η = r/2
√
νt.

Show also that the flux of vorticity across any plane z = constant remains constant at Γ for all t > 0.
Sketch v as a function of r.

9. Calculate the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2+y2)1/2 and time t. Show that the velocity
field represents a dynamically possible motion if f(r, t) satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r2 ,

where

γ(t) =
α

2ν

(

1± e−2α(t−t0)
)

−1

,

and A and t0 are constants.
Show that, in the case where the minus sign is taken, γ is approximately 1/[4ν(t− t0)] when t only just
exceeds t0. Which terms in the vorticity equation dominate when this approximation holds?

2


