Example Sheet 3

Every answer should include at least one relevant sketch

1. A rigid sphere of radius a falls under gravity through a Newtonian fluid of viscosity μ towards a horizontal rigid plane. Use lubrication theory to show that, when the minimum gap h_0 is very small, the speed of approach of the sphere is

$$h_0W/6\pi\mu a^2,$$

where W is the weight of the sphere corrected for buoyancy.

2. A Newtonian fluid of viscosity μ is forced by a pressure difference Δp through the narrow gap between two parallel circular cylinders of radius a with axes $2a + b$ apart. Show that, provided $b \ll a$ and $\rho b^3 \Delta p \ll \mu^2 a$, the volume flux through the gap per unit length along the axis of the cylinders is approximately

$$2b^{5/2} \Delta p / 9\pi a^{1/2} \mu,$$

when the cylinders are fixed.

Show that when the two cylinders rotate with angular velocities Ω_1 and Ω_2 in opposite directions (i.e. one rotates $\Omega_1 e_z$ while the other one $-\Omega_2 e_z$, where e_z is the unit vector along the axis of the cylinder), the change in the volume flux is given by

$$\frac{2}{3} ab (\Omega_1 + \Omega_2).$$

3. A viscous fluid coats the outer surface of a cylinder of radius a which rotates with angular velocity Ω about its axis, which is horizontal. The angle θ is measured from the horizontal on the rising side. Show that the volume flux per unit length $Q(\theta, t)$ is related to the thickness $h(\theta, t) \ll a$ of the fluid layer by

$$Q = \Omega ah - \frac{g}{3\nu} h^3 \cos \theta,$$

and deduce an evolution equation for $h(\theta, t)$.

Consider now the possibility of a steady state with $Q = \text{const}$, $h = h(\theta)$. Show that a steady solution with $h(\theta)$ continuous and 2π-periodic exists only if

$$\Omega a > \left(\frac{9Q^2 g}{4\nu}\right)^{1/3}.$$

[Hint: Consider a graph of $\cos \theta$ as a function of h.]

4. A two-dimensional drop of height $h(x, t)$ spreads on a horizontal surface. Assuming that the drop has become a thin layer, derive the partial differential equation governing the evolution of h. Looking for a similarity solution to the equation, find how the drop spreads.

[It is not possible to integrate the volume in closed form but you can derive the various power laws.]

5. A Newtonian fluid with dynamic viscosity μ flows in a shallow container with a free surface at $z = 0$. Using cartesian coordinates (x, y, z), the fluid velocity is denoted $(u_x, u_y, u_z) \equiv (u_H, u_z)$. The base of the container is rigid, and is located at $z = -h(x, y)$. An external horizontal stress $S(x, y)$ is applied at the free surface. Gravity may be neglected. Using lubrication theory, show that the two-dimensional horizontal volume flux $q(x, y) \equiv \int_0^h u_H \, dz$ satisfies the equations

$$\nabla \cdot q = 0, \quad \mu q = -\frac{1}{3} h^3 \nabla p + \frac{1}{2} h^2 S,$$
where $p(x, y)$ is the pressure. Find also an expression for the surface velocity $\mathbf{u}_0(x, y) \equiv \mathbf{u}_H(x, y, 0)$ in terms of S, q and h.

6. The walls of a straight two-dimensional channel are porous and separated by a distance d. A Newtonian fluid of viscosity μ is driven along the channel by a pressure gradient $G = -\partial p/\partial x$. At the same time, suction is applied to one wall of the channel providing a cross flow with uniform transverse component of velocity $V > 0$, with fluid being supplied at this rate to the other wall. Calculate the steady velocity and vorticity distributions in the fluid. Sketch them (i) when $V d/\nu \ll 1$ and (ii) when $V d/\nu \gg 1$.

7. A Newtonian fluid of viscosity μ fills an annulus $a < r < b$ between a long stationary cylinder $r = b$ and a long cylinder $r = a$ rotating at angular velocity Ω. Looking up the components of the Navier-Stokes equation in cylindrical coordinates, find the axisymmetric velocity field, ignoring end effects. Suppose now that the two cylinders are porous, and a pressure difference is applied so that there is a radial flow $-V a/r$ in the fluid annulus. Find an expression for the new steady flow around the cylinder when $V a/\nu \approx 2$. Comment on the flow structure when $V a/\nu \gg 1$. Find the torque (per unit length along the cylinder axis) required to maintain the motion, and show that it is independent of b and of the viscosity in the limit $V a/\nu \rightarrow \infty$. [Check the dimensions and sign of your result.]

8. Starting from the Navier-Stokes equations for incompressible viscous flow with conservative forces, obtain the vorticity equation
\[
\frac{D\omega}{Dt} = \omega \cdot \nabla \mathbf{u} + \nu \nabla^2 \omega.
\]
Interpret the terms in the equation.
At time $t = 0$ a line vortex is created along the z-axis, with the same circulation Γ around the axis at each z. The fluid is viscous and incompressible, and for $t > 0$ has only an azimuthal velocity denoted v. Show that there is a similarity solution of the form $vr/\Gamma = f(\eta)$, where $r = (x^2 + y^2)^{1/2}$ and η is a suitable similarity variable. Furthermore, show that all conditions are satisfied by
\[
f(\eta) = \left(1 - e^{-\eta^2}\right), \quad \eta = r/2\sqrt{\nu t}.
\]
Show also that the flux of vorticity across any plane $z = \text{constant}$ remains constant at Γ for all $t > 0$. Sketch v as a function of r.

9. Calculate the vorticity $\mathbf{\omega}$ associated with the velocity field
\[
\mathbf{u} = (-\alpha x - yf(\gamma, t), -\alpha y + xf(\gamma, t), 2az),
\]
where α is a positive constant, and $f(\gamma, t)$ depends on $r = (x^2 + y^2)^{1/2}$ and time t. Show that the velocity field represents a dynamically possible motion if $f(\gamma, t)$ satisfies
\[
2f + r \frac{\partial f}{\partial \gamma} = A \gamma(t)e^{-\gamma(t)r^2},
\]
where
\[
\gamma(t) = \frac{\alpha}{2\nu} \left(1 \pm e^{-2\alpha(t-t_0)}\right)^{-1},
\]
and A and t_0 are constants.
Show that, in the case where the minus sign is taken, γ is approximately $1/(4\nu(t-t_0))$ when t only just exceeds t_0. Which terms in the vorticity equation dominate when this approximation holds?