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Mathematical Tripos Part II Michaelmas 2024

D23 Fluid Dynamics II Grae Worster

mgw1@cam.ac.uk

Example Sheet 4

Every answer should include at least one relevant sketch

1. Vorticity. From the vorticity equation, derive the equation satisfied by the streamfunction ψ(r, θ)
for a steady two-dimensional flow in polar coordinates. Show further that this equation has solutions of
the form ψ = Qf(θ), with Q constant if f satisfies an ordinary differential equation which you should
determine.

2. Vorticity. Write down the equation satisfied by the vorticity ω(x, y, t) in a two-dimensional flow in
Cartesian coordinates. Introduce a streamfunction ψ and show that ω = −∇2ψ. Show that the vorticity
equation has a time-dependent similarity solution of the form

ψ = CxH(t)−1φ(η), ω = −CxH(t)−3φηη(η), for η = yH(t)−1,

if H(t) = (2Ct)1/2 and if φ satisfies an ordinary differential equation which you should determine
involving an effective Reynolds number, R ≡ C/ν.

3. Boundary layers. The concept of a boundary layer can be illustrated by ordinary differential
equations. Consider the equation satisfied on the interval [0, 1] by the function f(x)

ǫf ′ + f = 1, f(0) = 0. (∗)

Find the exact solution to (∗) and plot it for small values of ǫ. Formally take ǫ = 0 in (∗) and find its
solution, f0(x). Is f0(x) compatible with the boundary condition? Compare the exact solution to f0(x)
and explain what happens. What is the “size” of the boundary layer at x = 0?

4. Boundary layers. Wind blowing over a deep reservoir exerts at the water surface a uniform
tangential stress, S, which is normal to, and away from, a straight side of the reservoir. Use dimensional
analysis, based on (a) balancing the inertial and viscous forces in a thin boundary layer and (b) on the
imposed boundary condition, to find order-of-magnitude estimates δ(x) for the boundary-layer thickness
and U(x) for the surface velocity as functions of distance x from the shore. Using the boundary-layer
equations, find the ordinary differential equation governing the non-dimensional function f defined by

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

5. Boundary layers. A steady two-dimensional jet of fluid runs along a plane rigid wall. Use the
boundary-layer equations to show that the quantity

P =

∫

∞

0

u(y)

(
∫

∞

y

u(y′)2 dy′
)

dy

is independent of the distance x along the wall. Find order-of-magnitude estimates for the boundary-layer
thickness and velocity as functions of x.
Show that for the analogous axisymmetric wall jet spreading out radially the velocity varies like r−3/2.
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6. Instabilities. A vortex sheet of strength U is located at a distance h above a rigid wall y = 0 and
is parallel to it, so that the fluid velocity (u, 0, 0) is

u =

{

U in 0 < y < h,
0 in y > h .

Suppose now that the sheet is perturbed slightly to the position y = h+R
[

η0e
ik(x−ct)

]

where k > 0 is
real but c may be complex. Show that

c = U/(1± i
√
tanh kh).

Deduce that: (i) the sheet is unstable to disturbances of all wavelengths; (ii) for short waves (kh ≫ 1)
the growth rate kIm(c) is 1

2Uk and the wave propagation speed Re(c) is 1
2U , as if the wall were absent;

(iii) for long waves (kh≪ 1) the growth rate is Uk
√
kh and the propagation speed is U .

7. Instabilities. A two-dimensional jet in the x-direction has velocity profile

u =

{

0 in y > h,
U in −h < y < h,
0 in y < −h .

The vortex sheets at y = ±h are perturbed to

y =

{

+h+R
[

η1e
ik(x−ct)

]

,

−h+R
[

η2e
ik(x−ct)

]

.

Show that the jet is unstable to a ‘varicose’ instability for which η1 = −η2 (identical to that of question
6), and also to a ‘sinuous’ instability for which η1 = η2 and

c = U/(1± i
√
coth kh).

8. Instabilities. Two regions of the same inviscid fluid are separated by a thin membrane at y = 0.
The fluid in y > 0 has the uniform velocity (U, 0, 0) in cartesian coordinates, while the fluid at y < 0 is
at rest. The membrane is now slightly perturbed to y = η(x, t). The dynamical effect of the membrane
is to induce a pressure difference across it equal to β∂4η/∂x4, where β is a constant such that the
pressure is higher below the interface when ∂4η/∂x4 > 0. Assuming that the flow remains irrotational
and all perturbations are small, derive the relation between σ and k for a disturbance of the form
η(x, t) = R

[

Ceikx+σt
]

where k > 0 is real but σ may be complex. Show that there is an instability only
for k < kmax where kmax is to be determined. Find the maximum growth rate and the value of k for
which this is obtained.

9. Boundary layers. Show that the rate of dissipation of mechanical energy in an incompressible fluid
is 2µeijeij per unit volume, where eij is the rate-of-strain tensor and µ is the dynamic viscosity.
A finite mass of incompressible fluid, of dynamic viscosity µ and density ρ is held in the shape of a
sphere r < a by surface tension. It is set into a mode of small oscillations in which the velocity field may
be taken to have Cartesian components

u = βx, v = −βy, w = 0.

where β ∝ exp(−ǫt) sinωt. Assuming that ǫ ≪ ω, calculate the dissipation rate averaged over a cycle
(ignoring the slowly varying factor exp(−ǫt)) and hence show that ǫ = 5µ/ρa2. You may assume that
the total energy of the oscillation is twice the kinetic energy averaged over a cycle. Why is it permissible
to ignore the details of the boundary layer near r = a?
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